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This work is devoted to the study of the initial boundary value problem for a 
general isothermal model of capillary fluids derived by J.E. Dunn and J. Serrin 
(1985) (see [18]), which can be used as a phase transition model. We aim at proving 
the existence of local and global (under a condition of smallness on the initial 
data) strong solutions with initial density ln ρ0 belonging to the Besov space B

N
2

2,∞. 
It implies in particular that some classes of discontinuous initial density generate 
strong solutions. The proof relies on the fact that the density can be written as 
the sum of the solution ρL of the associated linear system and a remainder term ρ̄; 
this last term is more regular than ρL provided that we have regularizing effects 
induced on the bilinear convection term. The main difficulty consists in obtaining 
new estimates of maximum principle type for the associated linear system; this is 
based on a characterization of the Besov space in terms of the semi-group associated 
with this linear system. We show in particular the existence of global strong solution 
for small initial data in (B̃

N
2 −1,N

2
2,∞ ∩L∞) ×B

N
2 −1

2,∞ ; it allows us to exhibit a family of 
large energy initial data when N = 2 providing global strong solution. In conclusion 
we introduce the notion of quasi-solutions for the Korteweg’s system (a tool which 
has been developed in the framework of the compressible Navier–Stokes equations 
[31,30,32,26,27]) which enables to obtain the existence of global strong solution 
with a smallness condition which is subcritical. Indeed we can deal with large 
initial velocity in B

N
2 −1

2,1 . As a corollary, we get global strong solution for highly 
compressible Korteweg system when N ≥ 2. It means that for any large initial data 
(under an irrotational condition on the initial velocity) we have the existence of 
global strong solution provided that the Mach number is sufficiently large.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model we consider 
originates from the XIXth century work by J.F. Van der Waals and D.J. Korteweg [44,37] and was actually 
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derived in its modern form in the 1980s using the second gradient theory (see [18,35,43]). The first investi-
gations begin with the Young–Laplace theory which claims that the phases are separated by a hypersurface 
and that the jump in the pressure across the hypersurface is proportional to the curvature of the hypersur-
face. The main difficulty consists in describing the location and the movement of the interfaces. Another 
major problem is to understand whether the interface behaves as a discontinuity in the state space (sharp 
interface) or whether the phase boundary corresponds to a more regular transition (diffuse interface, DI). 
The diffuse interface models have the advantage to consider only one set of equations in a single spatial 
domain (the density takes into account the different phases) which considerably simplifies the mathematical 
and numerical study (indeed in the case of sharp interfaces, we have to treat a problem with free boundary). 
Another approach corresponds to determining equilibrium solutions which classically consists of the mini-
mization of the free energy functional. Unfortunately this minimization problem has an infinity of solutions, 
and many of them are physically irrelevant. In order to overcome this difficulty, J.F. Van der Waals in the 
XIX-th century was the first to add a term of capillarity in order to select the physically correct solutions. 
This theory is widely accepted as a thermodynamically consistent model for equilibria.

Korteweg-type models are based on an extended version of nonequilibrium thermodynamics, which as-
sumes that the energy of the fluid not only depends on standard variables but also on the gradient of the 
density. Alternatively, another way to penalize the high density variations consists in applying a zero order 
but non-local operator to the density gradient (see [42,41,40]). For more results on non-local Korteweg 
system, we refer also to [10–13,23,24].

Let us now consider a fluid of density ρ ≥ 0, velocity field u ∈ R
N , we are now going to consider the 

so-called local Korteweg system which is a compressible capillary fluid model, it can be derived from a 
Cahn–Hilliard like free energy (see the pioneering work by J.E. Dunn and J. Serrin in [18] and also [1,8,21]). 
The conservation of mass and of momentum write:⎧⎪⎨⎪⎩

∂

∂t
ρ + div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) − div(2μ(ρ)D(u)) −∇

(
λ(ρ))divu

)
+ ∇P (ρ) = divK,

(1.1)

where the Korteweg tensor reads as:

divK = ∇
(
ρκ(ρ)Δρ + 1

2(κ(ρ) + ρκ′(ρ))|∇ρ|2
)
− div

(
κ(ρ)∇ρ⊗∇ρ

)
. (1.2)

κ is the coefficient of capillarity and is a regular function. The term divK allows to describe the variation 
of density at the interfaces between two phases, generally a mixture liquid-vapor. P is a general increasing 
pressure. D(u) = 1

2 (∇u +t ∇u) defines the stress tensor, μ and λ are the two Lamé viscosity coefficients 
depending on the density ρ and satisfying:

μ > 0 and 2μ + Nλ ≥ 0.

We briefly recall the classical energy estimates for the system (1.1); let ρ̄ > 0 be a constant reference density 
(in what follows, we shall assume that ρ̄ = 1) and let Π be defined by:

Π(s) = s

( s∫
ρ̄

P (z)
z2 dz − P (ρ̄)

ρ̄

)
,

so that P (s) = sΠ′(s) −Π(s), Π′(ρ̄) = 0. Multiplying the equation of momentum conservation in the system 
(1.1) by u and integrating by parts over (0, t) ×R

N , we get the following estimate:



Download	English	Version:

https://daneshyari.com/en/article/6417365

Download	Persian	Version:

https://daneshyari.com/article/6417365

Daneshyari.com

https://daneshyari.com/en/article/6417365
https://daneshyari.com/article/6417365
https://daneshyari.com/

