# A Nicholson-type integral for the cross-product of the Bessel functions 

Tomasz Hrycak ${ }^{\text {a,* }}$, Sebastian Schmutzhard ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Acoustics Research Institute, Wohllebengasse 12-14, 1040 Wien, Austria<br>${ }^{\text {b }}$ Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge, United Kingdom

## A R T I C L E I N F O

## Article history:

Received 10 March 2015
Available online 4 December 2015
Submitted by K. Driver

## Keywords:

Nicholson's formula
Cross-product
Bessel functions
Hankel functions

> A B S T R A C T

> We prove a new Nicholson-type integral representation for the cross-product of the Bessel functions $J_{\nu}(w) Y_{\nu}(z)-Y_{\nu}(w) J_{\nu}(z)$, and related integral representations for $\left|H_{\nu}^{(1)}(z)\right|^{2}$, where $H_{\nu}^{(1)}$ is the Hankel function of the first kind.
> © 2015 Elsevier Inc. All rights reserved.

## 1. Introduction

The main result of this paper is the following representation of the cross-product of the Bessel functions $J_{\nu}$ and $Y_{\nu}$

$$
\begin{align*}
& J_{\nu}(w) Y_{\nu}(z)-Y_{\nu}(w) J_{\nu}(z)=  \tag{1}\\
& \quad=\frac{2}{\pi} \int_{C} J_{0}\left(\sqrt{z^{2}+w^{2}-2 z w \cosh \zeta}\right) \cosh \nu \zeta d \zeta
\end{align*}
$$

where $C$ is any contour starting at 0 and ending at $\log z-\log w$. The formula holds for every complex number $\nu$, and all complex numbers $z$ and $w$ such that $|\operatorname{Arg} z|<\pi$ and $|\operatorname{Arg} w|<\pi$. We demonstrate it in Theorem 2.1 by verifying that the integral satisfies Bessel's differential equation and appropriate limiting conditions at the origin.

The cross-products of the Bessel functions have long been studied theoretically, see e.g. [13, 10.6, 10.21], [8], [7]. They have also found several applications to wave propagation in cylindrical geometries, e.g. to

[^0]acoustic modeling of ducts [5], and to modeling of optical waveguides [6,14]. Other applications include heat transport [2] and free elastic oscillations of a spherical body [10]. Other integral representations of various products of the Bessel functions are well-known, an extensive list is given in [9, pp. 93-98], see also [11].

Our second result is an integral representation of the square of the modulus of the Hankel function $H_{\nu}^{(1)}$ of the first kind

$$
\begin{equation*}
\left|H_{\nu}^{(1)}(x+\imath y)\right|^{2}=\frac{8}{\pi^{2}} \int_{0}^{\infty} K_{0}\left(2 \sqrt{x^{2} \sinh ^{2} t+y^{2} \cosh ^{2} t}\right) \cosh 2 \nu t d t \tag{2}
\end{equation*}
$$

This formula is valid if all $x, y, \nu$ are real, and $y>0$. We present two simple derivations: one in Theorem 3.1 is based on a known representation of the product of the modified Bessel functions $K_{\nu}(\alpha) K_{\nu}(\beta)$, and another one in Appendix uses the Mehler-Sonine integrals.

Formula (2) has some interesting consequences. For example, it follows from (2) that for a fixed $z$ in the upper half-plane, the magnitude $\left|H_{\nu}^{(1)}(z)\right|$ increases with the order $\nu$ when $\nu \geqslant 0$. This fact has been observed experimentally $[4,1]$, but no proofs are given there. The property is needed in the numerical evaluation of the Bessel and the Hankel functions using a three-term recurrence. For the sake of numerical stability, the recurrence must proceed in the direction of increasing magnitudes. It is known that the magnitudes of the modified Bessel function $\left|K_{\nu}(\zeta)\right|$ grow with $\nu \geqslant 0[13,10.37]$ when $\zeta$ is in the right half-plane, and monotonicity of $\left|H_{\nu}^{(1)}(z)\right|$ can also be deduced from this fact.

In 1910, J.W. Nicholson published [12] the following equality

$$
\begin{equation*}
J_{\nu}^{2}(z)+Y_{\nu}^{2}(z)=\frac{8}{\pi^{2}} \int_{0}^{\infty} K_{0}(2 z \sinh t) \cosh 2 \nu t d t \tag{3}
\end{equation*}
$$

valid for $\operatorname{Re}(z)>0$ and an arbitrary complex order $\nu$. Nicholson's formula can be recovered from (2) by fixing $x>0$, letting $y \rightarrow 0^{+}$, and then taking analytic continuation first in $z$, and then in $\nu$. This derivation of (3) appears somewhat simpler than the one presented in [15], while another short proof is given in [16].

Finally, in Theorem 3.2 we combine (1) and (2) to obtain the following formula

$$
\begin{aligned}
\left|H_{\nu}^{(1)}(x-\imath y)\right|^{2} & =\frac{8}{\pi^{2}} \int_{0}^{\infty} K_{0}\left(2 \sqrt{x^{2} \sinh ^{2} t+y^{2} \cosh ^{2} t}\right) \cosh 2 \nu t d t \\
& +\frac{8}{\pi} \int_{0}^{\operatorname{arccot} \frac{x}{y}} I_{0}\left(2 \sqrt{-x^{2} \sin ^{2} \phi+y^{2} \cos ^{2} \phi}\right) \cos 2 \nu \phi d \phi
\end{aligned}
$$

which is valid if all $x, y, \nu$ are real, and $y>0$.

## 2. Integral representation of the cross-product

The following theorem, which gives an integral representation of the cross-product of the Bessel functions $J_{\nu}$ and $Y_{\nu}$, is the main result of this paper.

Theorem 2.1. For all complex numbers $z$ and $w$ such that $|\operatorname{Arg} z|<\pi$ and $|\operatorname{Arg} w|<\pi$, and for every complex number $\nu$,

$$
\begin{align*}
& J_{\nu}(w) Y_{\nu}(z)-Y_{\nu}(w) J_{\nu}(z)=  \tag{4}\\
& \quad=\frac{2}{\pi} \int_{C} J_{0}\left(\sqrt{z^{2}+w^{2}-2 z w \cosh \zeta}\right) \cosh \nu \zeta d \zeta \tag{5}
\end{align*}
$$

where $C$ is any contour starting at 0 and ending at $\log z-\log w$.

# https://daneshyari.com/en/article/6417407 

Download Persian Version:

## https://daneshyari.com/article/6417407

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail address: tomasz.hrycak@oeaw.ac.at (T. Hrycak).
    http://dx.doi.org/10.1016/j.jmaa.2015.11.056
    0022-247X/© 2015 Elsevier Inc. All rights reserved.

