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We consider a two-dimensional motion of a thin film flowing down an inclined plane 
under the influence of the gravity and the surface tension. In order to investigate 
the stability of such flow, it is hard to treat the Navier–Stokes equations directly, so 
that a thin film approximation is often used. It is an approximation obtained by the 
perturbation expansion with respect to the aspect ratio δ of the film under the thin 
film regime δ � 1. Our purpose is to give a mathematically rigorous justification of 
the thin film approximation by establishing an error estimate between the solution 
of the Navier–Stokes equations and those of approximate equations. To this end, 
in this paper we derive a uniform estimate for the solution of the Navier–Stokes 
equations with respect to δ under appropriate assumptions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider a two-dimensional motion of a liquid film of a viscous and incompressible 
fluid flowing down an inclined plane under the influence of the gravity and the surface tension on the 
interface. The motion can be mathematically formulated as a free boundary problem for the incompressible 
Navier–Stokes equations. We assume that the domain Ω(t) occupied by the liquid at time t ≥ 0, the liquid 
surface Γ(t), and the rigid plane Σ are of the forms⎧⎪⎨⎪⎩

Ω(t) = {(x, y) ∈ R
2 | 0 < y < h0 + η(x, t)},

Γ(t) = {(x, y) ∈ R
2 | y = h0 + η(x, t)},

Σ = {(x, y) ∈ R
2 | y = 0},
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Fig. 1. Sketch of a thin liquid film flowing down an inclined plane.

where h0 is the mean thickness of the liquid film and η(x, t) is the amplitude of the liquid surface. Here we 
choose a coordinate system (x, y) so that x axis is down and y axis is normal to the plane (see Fig. 1). The 
motion of the liquid is described by the velocity u = (u, v)T and the pressure p satisfying the Navier–Stokes 
equations {

ρ
(
ut + (u · ∇)u

)
= ∇ · P + ρg(sinα,− cosα)T in Ω(t), t > 0,

∇ · u = 0 in Ω(t), t > 0,
(1.1)

where P = −pI + 2μD is the stress tensor, D = 1
2
(
Du + (Du)T

)
is the deformation tensor, I is the unit 

matrix, ρ is a constant density of the liquid, g is the acceleration of the gravity, α is the angle of inclination, 
and μ is the shear viscosity coefficient. The dynamical and kinematic conditions on the liquid surface are{

Pn = −p0n + σHn on Γ(t), t > 0,
ηt + uηx − v = 0 on Γ(t), t > 0,

(1.2)

where n is the unit outward normal vector to the liquid surface, that is, n = 1√
1+ηx

(−ηx, 1)T, p0 is a 
constant atmospheric pressure, σ is the surface tension coefficient, and H is the twice mean curvature of the 
liquid surface, that is, H =

(
ηx√
1+η2

x

)
x
. The boundary condition on the rigid plane is the non-slip condition

u = 0 on Σ, t > 0. (1.3)

These equations have a laminar steady solution of the form

η = 0, u = (ρg sinα/2μ)(2h0y − y2), v = 0, p = p0 − ρg cosα(y − h0), (1.4)

which is called the Nusselt flat film solution. Throughout this paper, we assume that the flow is downward 
l0-periodic or approaches asymptotically this flat film solution at spatial infinity.

Concerning the instability of this laminar flow, there are vast research literatures from the physical and 
engineering point of view. The first investigation of the wave motion of thin film including the effect of the 
surface tension was provided by Kapitza [11]. In particular, he considered the case where the liquid film 
flows down a vertical wall, that is, the case α = π

2 . Yih [23] first formulated the linear stability problem 
of the laminar flow of the liquid film flowing down an inclined plane as an eigenvalue problem for the 
complex phase velocity, more specifically, the Orr–Sommerfeld problem although he neglected the effect 
of the surface tension. Benjamin [3] took into account the effect of the surface tension and showed that 
the critical Reynolds number is given by Rc = 5

4
1

tan α by expanding the normal mode solution in powers 
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