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For x ∈ [0, 1], the run-length function rn(x) is defined as the length of the longest 
run of 1’s amongst the first n dyadic digits in the dyadic expansion of x. Erdős and 
Rényi proved that lim

n→∞
rn(x)
log2 n

= 1 for Lebesgue almost all x ∈ [0, 1]. In this paper, 
we study the Hausdorff dimensions of the exceptional sets in Erdős–Rényi limit 
theorem. Let ϕ : N → (0, +∞) be a monotonically increasing function satisfying 
lim

n→∞
n

ϕ(n1+α) = +∞ with some 0 < α ≤ 1. We prove that the set

Eϕ
max =

{
x ∈ [0, 1] : lim inf

n→∞

rn(x)
ϕ(n)

= 0, lim sup
n→∞

rn(x)
ϕ(n)

= +∞
}

has Hausdorff dimension one and is residual in [0, 1].
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let us begin with the definition of run-length function rn(x), which was introduced to measure the 
length of consecutive terms of “heads” in n Bernoulli trials. More precisely, recall that any x ∈ [0, 1] can be 
represented as

x =
∞∑
k=1

xk

2k ,

where xk ∈ {0, 1} for any k ≥ 1. Write Σ = {0, 1}N. The infinite sequence (x1, x2, x3, . . .) ∈ Σ is called the 
digits sequence of x. Let π : Σ → [0, 1] be the code map, that is, π((x1, x2, x3, . . .)) = x. For each n ≥ 1 and 
x ∈ [0, 1], the run-length function rn(x) is defined as the length of the longest run of 1’s in (x1, x2, . . . , xn), 

* Corresponding author.
E-mail addresses: li-jinjun@163.com (J.J. Li), wumin@scut.edu.cn (M. Wu).

http://dx.doi.org/10.1016/j.jmaa.2015.12.001
0022-247X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2015.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:li-jinjun@163.com
mailto:wumin@scut.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2015.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.12.001&domain=pdf


356 J.J. Li, M. Wu / J. Math. Anal. Appl. 436 (2016) 355–365

that is,

rn(x) = max{� : xi+1 = · · · = xi+� = 1 for some 0 ≤ i ≤ n− �}.

The run-length function has been extensively studied in probability theory and used in reliability theory, 
biology, quality control. For the asymptotic behavior of rn, Erdős and Rényi [6] (see also [23]) proved that, 
for Lebesgue almost all x ∈ [0, 1],

lim
n→∞

rn(x)
log2 n

= 1.

That is, the rate of growth of rn(x) is log2 n for almost all x ∈ [0, 1]. Zou [24] considered some special sets 
consisting of points whose run-length functions obey other asymptotic behavior instead of log2 n. Chen and 
Wen [5] studied some level sets involved in the frequency on integer expansion and run-length function. For 
more details about the run-length function, we refer the reader to the book [23].

It is natural to study the exceptional set in the above Erdős–Rényi limit theorem. Ma et al. [16] proved 
that the set of points that violate the above Erdős and Rényi law is visible in the sense that it has full 
Hausdorff dimension.

Let

E =
{
x ∈ [0, 1] : lim inf

n→∞
rn(x)
log2 n

< lim sup
n→∞

rn(x)
log2 n

}
.

It is worth to point out that E is smaller than the set of points that violate the above Erdős and Rényi 
law because we consider the asymptotic behavior of rn(x) with respect to the fixed speed log2 n. It follows 
from the Erdős–Rényi limit theorem that the set E is negligible from the measure-theoretical point of view. 
There is a natural question: what is the Hausdorff dimension of the set E? In fact, questions related to 
the exceptional sets from dynamics and fractals have recently attracted huge interest in the literature. 
Generally speaking, exceptional sets are big from the dimensional point of view, and they have the same 
fractal dimensions as the underlying phase spaces, see [1,4,8,9,11,14,15,18,20–22] and references therein. In 
this paper we study a class of extremely refined subsets of the set E. Define

Emax =
{
x ∈ [0, 1] : lim inf

n→∞
rn(x)
log2 n

= 0, lim sup
n→∞

rn(x)
log2 n

= +∞
}
. (1)

That is, Emax is the set consisting of those “worst” divergence points. Clearly, Emax ⊂ E. We are interested 
in the Hausdorff dimension of the set Emax.

Intuitively, we feel that the set Emax shall be “small”. However, we have the following somewhat surprising 
result.

Theorem 1.1. Let Emax be defined as in (1). Then

dimH Emax = 1.

Here and in the sequel, dimH E denotes the Hausdorff dimension of the set E. For more details about 
Hausdorff dimension and the theory of fractal dimensions, we refer the reader to the famous book [7].

It is also natural to study the asymptotic behavior of run-length function with respect to other speeds 
instead of log2 n. Next we will show that Theorem 1.1 still holds for a general class of sets. More precisely, 
let ϕ : N → (0, +∞) be a monotonically increasing function. Define



Download	English	Version:

https://daneshyari.com/en/article/6417427

Download	Persian	Version:

https://daneshyari.com/article/6417427

Daneshyari.com

https://daneshyari.com/en/article/6417427
https://daneshyari.com/article/6417427
https://daneshyari.com/

