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1. Introduction

A partition of a positive integer n is any nonincreasing sequence of positive integers whose sum is n. For
example, 6 =3+ 2+ 1 and A = {3,2,1} is a partition of 6. A partition A of n is said to be a t-core if it has
no hook numbers that are multiples of t. We denote the number of t-core partitions of n by at(n).

The generating function of a;(n) is given by (see [6, Eq. (2.1)])
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here and throughout this paper, we use the following notation
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For convenience, we also introduce the brief notation
(a1,a2, - an; @)oo := (@15 ¢) o0 (@25 @)oo+ (An; @) co-
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A partition k-tuple (A1, A2, -+, A\x) of n is a k-tuple of partitions A1, Ag, -+, A such that the sum of all
the parts equals n. For example, let \y = {2,1}, Ao = {1,1}, A3 = {1}. Then (A1, A2) is a partition pair of
5since 24+ 141+ 1=25, and (A1, A2, A3) is a partition triple of 6 since 2+ 1+ 1+ 1+ 1 = 6. A partition
k-tuple of n with ¢-cores is a partition k-tuple (A1, A2, -+, Ax) of n where each A; is t-core for i = 1,2,-- - k.

Let A¢(n) (resp. Bi(n)) denote the number of partition pairs (resp. triples) of n with ¢-cores. From (1.1)
we know the generating functions for A;(n) and B(n) are
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respectively.

In this paper, we focus on partition k-tuples with 3-cores for 1 < k < 3. The properties of as(n), As(n)
and Bz(n) have drawn much attention in the past years. In 1996, using the tools of modular forms, Granville
and Ono (8] first discovered the following formula for az(n):

(lg(n) = d1,3(3n + 1) - d273(3n + 1), (14)

where d, 3(n) denote the number of positive divisors of n congruent to r modulo 3.
In 2009, by using some known identities, Hirschhorn and Sellers [9] provided an elementary proof of (1.4).
Moreover, let

3n+1= H pi - H qf g
pi=1 (mod 3) q;=2 (mod 3)
with each «;, 8; > 0 be the prime factorization of 3n 4 1, they gave the explicit formula:

as(n) = [[(e; +1) if all B; are even;
0 otherwise.

Some arithmetic identities were then obtained as corollaries. For example, let p = 2 (mod 3) be a prime
and let k be a positive even integer. Then, for all n > 0,

k

ag(pkn—i-p 3_1> = az(n).

In 2014, Lin [10] found some arithmetic relations about As(n) such as A3(8n + 6) = TA3(2n + 1). By
using some theta function identities, Baruah and Nath [4] established three infinite families of arithmetic
identities involving As(n). For any integer k > 1, they proved that
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