Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

## Explicit formulas for partition pairs and triples with 3-cores

## Liuquan Wang

Department of Mathematics, National University of Singapore, Singapore, 119076, Singapore

ARTICLE INFO

Article history: Received 16 July 2015 Available online 1 October 2015 Submitted by B.C. Berndt

Dedicated to my beloved mother, father, brother and sisters

Keywords: Partitions 3-Cores Ramanujan's  $_1\psi_1$  summation Bailey's  $_6\psi_6$  formula

## 1. Introduction

A partition of a positive integer n is any nonincreasing sequence of positive integers whose sum is n. For example, 6 = 3 + 2 + 1 and  $\lambda = \{3, 2, 1\}$  is a partition of 6. A partition  $\lambda$  of n is said to be a t-core if it has no hook numbers that are multiples of t. We denote the number of t-core partitions of n by  $a_t(n)$ .

The generating function of  $a_t(n)$  is given by (see [6, Eq. (2.1)])

$$\sum_{n=0}^{\infty} a_t(n) q^n = \frac{(q^t; q^t)_{\infty}^t}{(q; q)_{\infty}},$$
(1.1)

here and throughout this paper, we use the following notation

$$(a;q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n), \quad (a;q)_n := \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}} \quad (-\infty < n < \infty).$$

For convenience, we also introduce the brief notation

$$(a_1, a_2, \cdots, a_n; q)_{\infty} := (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_n; q)_{\infty}.$$

 $\label{eq:http://dx.doi.org/10.1016/j.jmaa.2015.09.074 \\ 0022-247X/© 2015 Elsevier Inc. All rights reserved.$ 







ABSTRACT

Let  $A_3(n)$  (resp.  $B_3(n)$ ) denote the number of partition pairs (resp. triples) of n where each partition is 3-core. By applying Ramanujan's  $_1\psi_1$  formula and Bailey's  $_6\psi_6$  formula, we find the explicit formulas for  $A_3(n)$  and  $B_3(n)$ . Using these formulas, we confirm a conjecture of Xia and establish many arithmetic identities satisfied by  $A_3(n)$  and  $B_3(n)$ .

© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: wangliuquan@u.nus.edu, mathlqwang@163.com.

A partition k-tuple  $(\lambda_1, \lambda_2, \dots, \lambda_k)$  of n is a k-tuple of partitions  $\lambda_1, \lambda_2, \dots, \lambda_k$  such that the sum of all the parts equals n. For example, let  $\lambda_1 = \{2, 1\}, \lambda_2 = \{1, 1\}, \lambda_3 = \{1\}$ . Then  $(\lambda_1, \lambda_2)$  is a partition pair of 5 since 2 + 1 + 1 + 1 = 5, and  $(\lambda_1, \lambda_2, \lambda_3)$  is a partition triple of 6 since 2 + 1 + 1 + 1 + 1 = 6. A partition k-tuple of n with t-cores is a partition k-tuple  $(\lambda_1, \lambda_2, \dots, \lambda_k)$  of n where each  $\lambda_i$  is t-core for  $i = 1, 2, \dots, k$ .

Let  $A_t(n)$  (resp.  $B_t(n)$ ) denote the number of partition pairs (resp. triples) of n with t-cores. From (1.1) we know the generating functions for  $A_t(n)$  and  $B_t(n)$  are

$$\sum_{n=0}^{\infty} A_t(n) q^n = \frac{(q^t; q^t)_{\infty}^{2t}}{(q; q)_{\infty}^2}$$
(1.2)

and

$$\sum_{n=0}^{\infty} B_t(n) q^n = \frac{(q^t; q^t)_{\infty}^{3t}}{(q; q)_{\infty}^3}$$
(1.3)

respectively.

In this paper, we focus on partition k-tuples with 3-cores for  $1 \le k \le 3$ . The properties of  $a_3(n)$ ,  $A_3(n)$  and  $B_3(n)$  have drawn much attention in the past years. In 1996, using the tools of modular forms, Granville and Ono [8] first discovered the following formula for  $a_3(n)$ :

$$a_3(n) = d_{1,3}(3n+1) - d_{2,3}(3n+1), \tag{1.4}$$

where  $d_{r,3}(n)$  denote the number of positive divisors of n congruent to r modulo 3.

In 2009, by using some known identities, Hirschhorn and Sellers [9] provided an elementary proof of (1.4). Moreover, let

$$3n+1 = \prod_{p_i \equiv 1 \pmod{3}} p_i^{\alpha_i} \cdot \prod_{q_j \equiv 2 \pmod{3}} q_j^{\beta_j}$$

with each  $\alpha_i, \beta_j \ge 0$  be the prime factorization of 3n + 1, they gave the explicit formula:

$$a_3(n) = \begin{cases} \prod (\alpha_i + 1) & \text{if all } \beta_j \text{ are even;} \\ 0 & \text{otherwise.} \end{cases}$$

Some arithmetic identities were then obtained as corollaries. For example, let  $p \equiv 2 \pmod{3}$  be a prime and let k be a positive even integer. Then, for all  $n \geq 0$ ,

$$a_3\left(p^k n + \frac{p^k - 1}{3}\right) = a_3(n).$$

In 2014, Lin [10] found some arithmetic relations about  $A_3(n)$  such as  $A_3(8n+6) = 7A_3(2n+1)$ . By using some theta function identities, Baruah and Nath [4] established three infinite families of arithmetic identities involving  $A_3(n)$ . For any integer  $k \ge 1$ , they proved that

$$A_{3}\left(2^{2k+2}n + \frac{2(2^{2k}-1)}{3}\right) = \frac{2^{2k+2}-1}{3}A_{3}(4n),$$

$$A_{3}\left(2^{2k+2}n + \frac{2(2^{2k+2}-1)}{3}\right) = \frac{2^{2k+2}-1}{3}A_{3}(4n+2) - \frac{2^{2k+2}-4}{3}A_{3}(n),$$

$$A_{3}\left(2^{2k+1}n + \frac{5 \cdot 2^{2k}-2}{3}\right) = (2^{2k+1}-1)A_{3}(2n+1).$$
(1.5)

Download English Version:

## https://daneshyari.com/en/article/6417471

Download Persian Version:

https://daneshyari.com/article/6417471

Daneshyari.com