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We study essentially bounded quantum random variables and show that the Gelfand 
spectrum of such a quantum random variable ψ coincides with the hypoconvex 
hull of the essential range of ψ. Moreover, a notion of operator-valued variance 
is introduced, leading to a formulation of the moment problem in the context of 
quantum probability spaces in terms of operator-theoretic properties involving semi-
invariant subspaces and spectral theory. As an application of quantum variance, new 
measures of random and inherent quantum noise are introduced for measurements 
of quantum systems, modifying some recent ideas of Polterovich [17].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Some of the most basic and useful properties of classical random variables are altered when passing 
from real- or complex-valued measurable functions to operator-valued measurable functions (that is, from 
classical to quantum random variables). In earlier works [8,9,12], a certain operator-valued formulation of 
the notion of expectation of a quantum random variable was considered. In the present paper, we consider 
a similar formulation for the variance of a quantum random variable. As in these earlier investigations, 
the noncommutativity of operator algebra will lead to some structure that simply does not appear in the 
classical setting.

It is a basic fact of functional analysis that the essential range of an essentially bounded random variable 
coincides with the spectrum of a certain element in an abelian von Neumann algebra. Specifically, if ψ :
X → C is an essentially bounded function on a probability space (X, F(X), μ), then the essential range 
of ψ is precisely the spectrum of ψ, where one considers ψ as an element of the von Neumann algebra 
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L∞(X, F(X), μ). We will arrive at a similar result for essentially bounded quantum random variables on 
quantum probability spaces using higher dimensional spectra. However, it will turn out that our investigation 
of quantum variance will also involve notions from spectral theory. In particular, the quantum moment 
problem admits a characterisation entirely within spectral terms.

As an application of our operator-valued variance, we consider some recent work of Polterovich [17] on 
random and inherent quantum noise in which the variance has a role. In Polterovich’s work, a somewhat 
hybrid context is at play: while the measures are operator-valued, the random variables are classical. In mod-
ifying Polterovich’s ideas to account for operator-valued measures and operator-valued random variables, 
we formulate new measures of quantum noise. One of the main consequences of our results in this direction 
is that if an experimental apparatus is free of random quantum noise, then it is classical, not quantum me-
chanical. Our work on quantum noise involves another idea that may be of value in other settings, namely 
that of quantum randomisation (or smearing), which is in contrast to the hybrid notion of smearing stud-
ied in early works such as [4,11]. By way of quantum randomisation, we also modify another concept of 
Polterovich to obtain a measure of the intrinsic quantum noise of the apparatus represented by ν.

If (X, F(X)) denotes an arbitrary measurable space, and if M is a von Neumann algebra with predual 
M∗ and positive cone M+, then a function ν : F(X) → M is a positive operator-valued measure (POVM) if

1. ν(E) ∈ M+ for every E ∈ F(X),
2. ν(X) �= 0, and
3. ω ◦ ν : F(X) → C is a complex measure for every ω ∈ M∗.

Note that the third condition above asserts that, for every countable collection {Ek}k∈N ⊆ F(X) with 
Ej ∩ Ek = ∅ for j �= k,

ν

( ⋃
k∈N

Ek

)
=

∑
k∈N

ν(Ek), (1)

where the convergence is with respect to the ultraweak topology of M .
If a POVM ν also satisfies ν(E ∩ F ) = ν(E)ν(F ) for all E, F ∈ F(X), then ν is called a projective 

POVM. An important theorem of M.A. Neumark [14], [15, Theorem 4.6] states that every POVM admits 
a dilation to a projective POVM. Lastly, if a POVM ν has the property that ν(X) = 1, the identity element 
of M , then ν is called a quantum probability measure.

A function ψ : X → M is said to be measurable if the complex-valued function ω◦f on X is measurable for 
every ω ∈ M∗. Furthermore, if ν is a quantum probability measure, then a measurable function ψ : X → M

is called a quantum random variable.
Suppose that ω ∈ M∗ is a faithful state on M and that ν is a quantum probability measure. Then ω ◦ν is 

a (classical) probability measure and, because ω is faithful, ν and ω ◦ ν are mutually absolutely continuous. 
The predual of the von Neumann algebra L∞(X, ω ◦ν)⊗M is given by L1

M∗
(X, ω ◦ν) [20, Theorem IV.7.17]. 

By way of this duality isomorphism, if Ψ ∈ L∞(X, ω ◦ ν)⊗M , then there is a bounded measurable function 
ψ : X → M such that, for each f ∈ L1

M∗
(X, ω ◦ ν), the complex number Ψ(f) is given by

Ψ(f) =
∫
X

ω (f(x)ψ(x)) d(ω ◦ ν)(x).

Although ψ is not unique, it is unique up to a set of ω ◦ ν-measure zero. We therefore identify Ψ and ψ and 
consider the elements of L∞(X, ω ◦ ν)⊗M , in the case where ν is a quantum probability measure, to be 
bounded quantum random variables ψ : X → M .

The general context described above for operator-valued measures and functions is considered in this 
paper only in the setting a finite factor M of type Id; that is, M = B(H) for some d-dimensional Hilbert 
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