

On certain geometric properties of polyharmonic mappings

CrossMark

Peijin Li ${ }^{\text {a }}$, S.A. Khuri ${ }^{\mathrm{b}, *}$, Xiantao Wang ${ }^{\mathrm{c}}$
${ }^{a}$ Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
b Department of Mathematics and Statistics, American University of Sharjah, United Arab Emirates
c Department of Mathematics, Shantou University, Shantou, Guangdong 515063, People's Republic of China

A R T I C L E I N F O

Article history:

Received 13 September 2014
Available online 2 February 2015
Submitted by V. Andrievskii

Keywords:

Polyharmonic mapping
Univalence
Starlikeness
Convexity

Abstract

The main purpose of this paper is twofold. First, the three-quarter theorem is established for a large class of polyharmonic mappings. Second, a class of polyharmonic mappings with positive Jacobian and being univalent in the unit disk \mathbb{D} are constructed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A $2 p$-continuously differentiable complex-valued function $F=u+i v$ in a domain $D \subset \mathbb{C}$ is polyharmonic (or p-harmonic) if F satisfies the p-harmonic equation

$$
\Delta^{p} F:=\Delta\left(\Delta^{p-1}\right) F=0
$$

When $p=1$ (resp. $p=2$), F is harmonic (resp. biharmonic). In particular, a harmonic mapping in a simply connected domain D of \mathbb{C} can be expressed in the form $f=g+\bar{h}$, where h and g are analytic in D. See $[6,8,9]$ for more properties of harmonic mappings.

In the following, we always assume that the domain $D \subset \mathbb{C}$ is the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. That is, throughout this paper, we consider polyharmonic mappings on \mathbb{D}.

The subsequent proposition provides a characterization of polyharmonic mappings which is essential to our analysis (cf. [5]).

[^0]Proposition 1.1. If F is a polyharmonic mapping in D then it has the representation:

$$
F=F(z, \bar{z})=\sum_{n=0}^{p-1} r^{2 n} F_{n}
$$

where F_{n} 's are complex-valued harmonic mappings in D and $r^{2 n}=|z|^{2 n}=(z \bar{z})^{n}$.
In particular, if F is a biharmonic mapping then it has the representation

$$
F=r^{2} G+H=|z|^{2} G+H,
$$

where G and H are complex-valued harmonic mappings in \mathbb{D}.
A set $E \subset \mathbb{C}$ is starlike with respect to a point $w_{0} \in E$ if and only if the linear segment joining w_{0} to every other point $w \in E$ lies entirely in E, while a set E is said to be convex if and only if it is starlike with respect to each of its points, that is, if and only if the linear segment joining any two points of E lies entirely in E.

A univalent polyharmonic mapping F, with $F(0)=0$, is said to be starlike in \mathbb{D} if the domain bounded by the curve $F\left(r e^{i t}\right)$ is starlike with respect to the origin for each $0<r<1$. In other words, F is starlike in \mathbb{D} if

$$
\frac{\partial \arg F\left(r e^{i t}\right)}{\partial t}=\operatorname{Re}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}\right)>0
$$

for all $z \neq 0$ and $r \in(0,1)$.
A univalent polyharmonic mapping F, with $F(0)=0$ and $\frac{\partial F\left(r e^{i t}\right)}{\partial t} \neq 0$ for $0<r<1$, is said to be convex if the domain bounded by the curve $F\left(r e^{i t}\right)$ is convex for each $0<r<1$. Putting it differently, F is convex if

$$
\frac{\partial \arg \frac{\partial}{\partial t} F\left(r e^{i t}\right)}{\partial t}>0
$$

for all $z \neq 0$ and $r \in(0,1)$.
It is known that a harmonic mapping F is locally univalent if the Jacobian of F, denoted by J_{F},

$$
J_{F}=\left|F_{z}\right|^{2}-\left|F_{\bar{z}}\right|^{2} \neq 0,
$$

and F is orientation preserving if

$$
J_{F}=\left|F_{z}\right|^{2}-\left|F_{\bar{z}}\right|^{2}>0 .
$$

Let S, see [8], denote the class of all conformal univalent functions on \mathbb{D} of the form

$$
G(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} .
$$

In this paper, we mainly consider the following class of polyharmonic mappings together with its two subclasses, where $p \geq 2$, which are as follows:

$$
\begin{gathered}
\mathcal{P H}=\left\{F: F=\sum_{n=0}^{p-1} \lambda_{n} r^{2 n} G, \text { where } G \text { is harmonic, all } \lambda_{i}\right. \text { 's are real constants, } \\
\left.\lambda_{1}^{2}+\lambda_{2}^{2}+\ldots+\lambda_{p-1}^{2} \neq 0 \text { and } r=|z|\right\}
\end{gathered}
$$

https://daneshyari.com/en/article/6417521

Download Persian Version:

https://daneshyari.com/article/6417521

Daneshyari.com

[^0]: मे The research was partly supported by NNSF of China.

 * Corresponding author.

 E-mail addresses: wokeyi99@163.com (P. Li), skhoury@aus.ac.ae (S.A. Khuri), xtwang@stu.edu.cn (X. Wang).

