Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The subnormal completion problem in several variables

David P. Kimsey¹

Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501 Israel

A R T I C L E I N F O

Article history: Received 24 March 2014 Available online 30 September 2015 Submitted by L. Fialkow

Keywords: Subnormal completion problem in several variables Truncated K-moment problem on \mathbb{R}^d ABSTRACT

The subnormal completion problem for *d*-variable weighted shifts is considered. Necessary and sufficient conditions are obtained for a collection of initial weights $C = \{(\alpha_{\eta}^{(1)}, \ldots, \alpha_{\eta}^{(d)})\}_{\gamma \in \Gamma}$, where Γ is from a family of finite indexing sets which includes $\{\gamma \in \mathbb{N}_0^d : 0 \leq |\gamma| \leq m\}$, to give rise to a *d*-variable subnormal weighted shift operator whose initial weights are given by C. The conditions are communicated in terms of a new solution of a corresponding truncated *K*-moment problem. The case when d = 2 and all cubic moments are known is investigated in detail. In particular, using the solution of the subnormal completion problem in *d*-variables presented here, an easily checked concrete sufficient condition is given for a solution to the cubic subnormal completion problem in 2-variables and also an example of a collection of weights in 2-variables with cubic moments is provided which satisfies natural positivity conditions yet does not admit a subnormal completion.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We present a new approach to the subnormal completion problem for weighted shift operators in d-variables. The approach is based on a solution to the truncated K-moment problem on \mathbb{R}^d which originated in [18]. Given a Hilbert space \mathcal{H} , with inner product $\langle \cdot, \cdot \rangle$, we denote the space of bounded linear operators on \mathcal{H} by $\mathcal{L}(\mathcal{H})$. An operator $A \in \mathcal{L}(\mathcal{H})$ is called normal and hyponormal if $A^*A - AA^* = 0$ and $A^*A - AA^* \succeq 0$, respectively. We call $A \in \mathcal{L}(\mathcal{H})$ subnormal if there exists a normal operator $B \in \mathcal{L}(\mathcal{K})$ so that $\mathcal{H} \subseteq \mathcal{K}$ and $A\xi = B\xi$ for $\xi \in \mathcal{H}$. The Bram–Halmos criterion [3] states that $A \in \mathcal{L}(\mathcal{H})$ is subnormal if and only if

$$\sum_{j,k=0}^{n} \langle A^{j}\xi_{j}, A^{k}\xi_{k} \rangle \ge 0 \tag{1.1}$$

CrossMark

E-mail address: dpkimsey@gmail.com.

 $^{^1\,}$ The author gratefully acknowledges support from a Kreitman postdoctoral fellowship.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jmaa.2015.09.063} \\ 0022\text{-}247X/ © 2015 Elsevier Inc. All rights reserved.$

for all finite subsets $\{\xi_0, \ldots, \xi_n\} \subset \mathcal{H}$. If $A, B \in \mathcal{L}(\mathcal{H})$, then $[A, B] \stackrel{\text{def}}{=} AB - BA$. We call an $\mathcal{L}(\mathcal{H})$ -valued *d*-tuple of operators $T = (T_1, \ldots, T_d)$ jointly hyponormal if

$$\begin{pmatrix} [T_1^*, T_1] & \cdots & [T_1^*, T_d] \\ \vdots & \ddots & \vdots \\ [T_d^*, T_1] & \cdots & [T_d^*, T_d] \end{pmatrix} \succeq 0.$$
(1.2)

We call an $\mathcal{L}(\mathcal{H})$ -valued *d*-tuple $T = (T_1, \ldots, T_d)$ normal if $[T_j, T_k] = 0$ and T_j is normal for all $j, k = 1, \ldots, d$. We call an $\mathcal{L}(\mathcal{H})$ -valued $T = (T_1, \ldots, T_d)$ subnormal if there exists a Hilbert space \mathcal{K} and an $\mathcal{L}(\mathcal{K})$ -valued normal *d*-tuple $U = (U_1, \ldots, U_d)$, where $\mathcal{H} \subseteq \mathcal{K}$, so that $U_j \xi = T_j \xi$ for all $j = 1, \ldots, d$ and $\xi \in \mathcal{H}$. It is readily seen that the following implications hold:

T is normal $\Rightarrow T$ is subnormal $\Rightarrow T$ is hyponormal.

For more information on subnormal operators see [3] and [4]. See [1] and [5] for more information on joint hyponormality. For a multivariable generalization of the Bram–Halmos criterion see [12].

Let \mathbb{N}_0^d denote the set of all *d*-tuples of nonnegative integers and $0_d = (0, \ldots, 0) \in \mathbb{N}_0^d$. If $m = (m_1, \ldots, m_d) \in \mathbb{N}_0^d$, then $|m| = \sum_{j=1}^d m_j$. A finite set $\Gamma \subset \mathbb{N}_0^d$ will be called a *lattice set* if every element of Γ is path connected to 0_d . For instance, $\{(0,0), (0,1), (1,1)\}$ is a lattice set, while $\{(0,0), (1,1)\}$ is not. Let $\ell_{\infty}(\mathbb{N}_0^d)$ denote the space of all bounded multisequences $\{a_m\}_{m \in \mathbb{N}_0^d}$ and $\ell_2(\mathbb{N}_0^d)$ be the Hilbert space of all multisequences $\{a_m\}_{m \in \mathbb{N}_0^d}$ so that $\sum_{m \in \mathbb{N}_0^d} |a_m|^2 < \infty$ with the usual inner product. Let $\{\varepsilon_m\}_{m \in \mathbb{N}_0^d}$ denote the canonical orthonormal basis of $\ell_2(\mathbb{N}_0^d)$ and $\mathbf{e}_j = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{N}_0^d$, where 1 is in the *j*th position.

If $\alpha^{(j)} = \{\alpha_m^{(j)}\}_{m \in \mathbb{N}_0^d} \in \ell_{\infty}(\mathbb{N}_0^d)$ for $j = 1, \ldots, d$, then we define the *d*-variable weighted shift $T = (T_1, \ldots, T_d)$ by

$$T_j \varepsilon_m \stackrel{\text{def}}{=} \alpha_m^{(j)} \varepsilon_{m+\mathbf{e}_j} \quad \text{for} \quad j = 1, \dots, d.$$
 (1.3)

It is easy to check that $T_jT_k = T_kT_j$ if and only if

$$\alpha_{m+e_j}^{(k)} \alpha_m^{(j)} = \alpha_{m+e_k}^{(j)} \alpha_m^{(k)} \quad \text{for} \quad j, k = 1, \dots, d.$$
(1.4)

Given $m \in \mathbb{N}_0^d$, the moment of $\mathcal{C}_{\infty} = (\alpha^{(1)}, \ldots, \alpha^{(d)})$ of order m is given by

$$s_m = \begin{cases} 1 & \text{if } m = 0_d, \\ (\alpha_{m-e_j}^{(j)})^2 s_{m-e_j} & \text{if } m = (m_1, \dots, m_d) & \text{where } m_j \neq 0. \end{cases}$$
(1.5)

It follows from (1.4) that s_m can be computed via any nondecreasing path from 0_d to m.

Problem 1.1 (Subnormal completion problem in d-variables). Given a finite collection of positive real numbers

$$\mathcal{C} = \{(\alpha_{\gamma}^{(1)}, \dots, \alpha_{\gamma}^{(d)})\}_{\gamma \in \Gamma}$$

which satisfies (1.4), where Γ is a lattice set (i.e., a finite subset of *d*-tuples of nonnegative integers which are path connected to the origin), the *subnormal completion problem in d-variables* entails finding necessary and sufficient conditions for the existence of a subnormal *d*-variable weighted shift whose initial weights are given by C. More precisely, given C as above, we wish to establish the existence of a *d*-variable weighted shift $T = (T_1, \ldots, T_d)$ so that Download English Version:

https://daneshyari.com/en/article/6417526

Download Persian Version:

https://daneshyari.com/article/6417526

Daneshyari.com