Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotic formula on average path length of fractal networks modeled on Sierpinski gasket $\stackrel{\bigstar}{\approx}$

Fei Gao^a, Anbo Le^b, Lifeng Xi^{c,*}, Shuhua Yin^b

 ^a School of Computer Science and Information Technology, Zhejiang Wanli University, 315100 Ningbo, PR China
^b Institute of Mathematics, Zhejiang Wanli University, 315100 Ningbo, PR China

^c Department of Mathematics, Ningbo University, 315211 Ningbo, PR China

A R T I C L E I N F O

Article history: Received 6 March 2015 Available online 8 October 2015 Submitted by M. Laczkovich

Keywords: Fractal Sierpinski gasket Network Self-similarity

1. Introduction

The Sierpinski gasket described in 1915 by W. Sierpiński is a classical fractal. Suppose K is the solid regular triangle with vertexes $a_1 = (0,0)$, $a_2 = (1,0)$, $a_3 = (1/2,\sqrt{3}/2)$ (see Fig. 1). Let $T_i(x) = x/2 + a_i/2$ be the contracting similitude for i = 1, 2, 3. Then $T_i: K \to K$ and the Sierpinski gasket E is the self-similar set, which is the unique invariant set [7] of IFS $\{T_1, T_2, T_3\}$, satisfying

$$E = \bigcup_{i=1}^{3} T_i(E).$$

The Sierpinski gasket is important for the study of fractals, e.g., the Sierpinski gasket is a typical example of post-critically finite self-similar fractals on which the Dirichlet forms and Laplacians can be constructed by Kigami [8,9], see also Strichartz [12].

For the word $\sigma = i_1 \cdots i_k$ with letters in $\{1, 2, 3\}$, i.e., every letter $i_t \in \{1, 2, 3\}$ for all $t \leq k$, we denote by $|\sigma|(=k)$ the length of word σ . Given words $\sigma = i_1 \cdots i_k$ and $\tau = j_1 \cdots j_n$, we call σ a prefix of τ and

http://dx.doi.org/10.1016/j.jmaa.2015.10.001 0022-247X/© 2015 Elsevier Inc. All rights reserved.

ABSTRACT

In this paper, we introduce a new method to construct evolving networks based on the construction of the Sierpinski gasket. Using self-similarity and renewal theorem, we obtain the asymptotic formula for average path length of our evolving networks. © 2015 Elsevier Inc. All rights reserved.

^{*} The work is supported by NSFC (Nos. 11371329, 11471124), NSF of Zhejiang (Nos. LR13A1010001, LY12F02011).

^{*} Corresponding author.

E-mail addresses: dgaofei@sina.com (F. Gao), anbole@msn.com (A. Le), xilifengningbo@yahoo.com (L. Xi), yinshuhua@126.com (S. Yin).

Fig. 1. The first two constructions of Sierpinski gasket.

Fig. 2. Geodesic paths.

denote by $\tau \prec \sigma$, if k < n and $i_1 \cdots i_k = j_1 \cdots j_k$. We also write $\tau \preceq \sigma$ if $\tau = \sigma$ or $\tau \prec \sigma$. When $\tau \prec \sigma$ with $|\tau| = |\sigma| - 1$, we say that τ is the father of σ and σ is a child of τ . Given $\sigma = i_1 \cdots i_k$, we write $T_{\sigma} = T_{i_1} \circ \cdots \circ T_{i_k}$ and $K_{\sigma} = T_{\sigma}(K)$ which is a solid regular triangle with side length $2^{-|\sigma|}$. For notational convenience, we write $K_{\emptyset} = K$ with empty word \emptyset . We also denote $|\emptyset| = 0$. If $\tau \prec \sigma$, then $K_{\sigma} \subset K_{\tau}$. For solid triangle K_{σ} with word σ , we denote by ∂K_{σ} its boundary consisting of 3 sides, where every side is a line segment with side length $2^{-|\sigma|}$.

Complex networks arise from natural and social phenomena, such as the Internet, the collaborations in research, and the social relationships. These networks have in common two structural characteristics: the small-world effect and the scale-freeness (*power-law* degree distribution), as indicated, respectively, in the seminal papers by Watts and Strogatz [14] and by Barabási and Albert [1]. In fact complex networks also exhibit *self-similarity* as demonstrated by Song, Havlin and Makse [11] and fractals possess the feature of *power law* in terms of their fractal dimension (e.g. see [4]). Recently self-similar fractals are used to model evolving networks, for example, in a series of papers, Zhang et al. [16,17,6] use the Sierpinski gasket to construct evolving networks. There are also some complex networks modeled on self-similar fractals, for example, Liu and Kong [10] and Chen et al. [2] study Koch networks, Zhang et al. [15] investigate the networks constructed from Vicsek fractals. See also Dai and Liu [3], Sun et al. [13] and Zhou et al. [18].

In the paper, we introduce a new method to construct evolving networks modeled on Sierpinski gasket and study the asymptotic formula for average path length.

Since E is connected, we can construct the network from geometry as follows.

Fix an integer t, we consider a network G_t with vertex set $V_t = \{\sigma : 0 \le |\sigma| \le t\}$ where $\#V_t = 1+3+\ldots+3^t = \frac{1}{2}(3^{t+1}-1)$. For the edge set of G_t , there is a unique edge between distinct words σ and τ (denoted by $\tau \sim \sigma$) if and only if

$$\partial K_{\sigma} \cap \partial K_{\tau} \neq \emptyset. \tag{1.1}$$

We can illustrate the geodesic paths in Fig. 2 for t = 3. We have $233 \sim 32 \sim 312$ since $\partial K_{233} \cap \partial K_{32} = \{C\}$ and $\partial K_{32} \cap \partial K_{312} = \{F\}$. We also get another geodesic path from 233 to 312: 233 $\sim 3 \sim 312$ since Download English Version:

https://daneshyari.com/en/article/6417532

Download Persian Version:

https://daneshyari.com/article/6417532

Daneshyari.com