

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

MATHEMATICAL
ANALYSIS AND
APPLICATIONS
THE CONTROL OF T

www.elsevier.com/locate/jmaa

On complex symmetric Toeplitz operators

Eungil Ko^a, Ji Eun Lee^{b,*}

- ^a Department of Mathematics, Ewha Womans University, Seoul 120-750, Republic of Korea
- ^b Department of Mathematics-Applied Statistics, Sejong University, Secul 143-747, Republic of Korea

ARTICLE INFO

Article history: Received 8 May 2015 Available online 7 September 2015 Submitted by J. Bonet

Keywords: Complex symmetric operator Toeplitz operator Normal operator

ABSTRACT

In this paper, we give a characterization of a complex symmetric Toeplitz operator T_{φ} on the Hardy space H^2 . Moreover, if T_{φ} is a complex symmetric Toeplitz operator, we provide a necessary and sufficient condition for T_{φ} to be normal. Finally, we investigate these T_{φ} with finite symbols.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on a separable complex Hilbert space \mathcal{H} . For an operator $T \in \mathcal{L}(\mathcal{H})$, let T^* denote the adjoint of T. An operator $T \in \mathcal{L}(\mathcal{H})$ is normal if $T^*T = TT^*$, subnormal if there exists a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N\mathcal{H} \subset \mathcal{H}$ and $T = N|_{\mathcal{H}}$, and hyponormal if $T^*T - TT^* \geq 0$.

A conjugation on \mathcal{H} is an antilinear operator $C: \mathcal{H} \to \mathcal{H}$ with $C^2 = I$ which satisfies $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. For a conjugation C, there exists an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ for \mathcal{H} such that $Ce_n = e_n$ for all n (see [4] and [6] for more details). We call an operator $T \in \mathcal{L}(\mathcal{H})$ complex symmetric if there exists a conjugation C on \mathcal{H} such that $T = CT^*C$. The class of complex symmetric operators includes all normal operators, Hankel operators, truncated Toeplitz operators, and Volterra integration operators. We refer the reader to [6,7,12,11] for more details, including historical comments and references.

Let L^2 be the Lebesgue (Hilbert) space on the unit circle $\partial \mathbb{D}$, and let L^{∞} be the Banach space of all essentially bounded functions on $\partial \mathbb{D}$. Then it is well-known that $\{e_n(z) = z^n : n = 0, \pm 1, \pm 2, \pm 3, ...\}$ is an

E-mail addresses: eiko@ewha.ac.kr (E. Ko), jieun7@ewhain.net, jieunlee7@sejong.ac.kr (J.E. Lee).

[‡] This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2009-0083521) and was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A3006841).

^{*} Corresponding author.

orthonormal basis for L^2 . If $f \in L^2$, then the function f is expressed as $f(z) = \sum_{n=-\infty}^{\infty} \hat{f}(n)z^n$ where $\hat{f}(n)$ denotes the nth Fourier coefficient of f. The Hilbert Hardy space, denoted by H^2 , consists of all functions f analytic on the open unit disk \mathbb{D} with the power series representation

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 where $\sum_{n=0}^{\infty} |a_n|^2 < \infty$,

or equivalently, with $\sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right) < \infty$. It is clear that $H^2 = \overline{\operatorname{span}\{z^n : n = 0, 1, 2, 3, \ldots\}}$. For any $\varphi \in L^{\infty}$, the Toeplitz operator $T_{\varphi} : H^2 \to H^2$ is defined by the formula

$$T_{\varphi}f = P(\varphi f)$$

for $f \in H^2$ where P denotes the orthogonal projection of L^2 onto H^2 . It is known that T_{φ} is bounded if and only if $\varphi \in L^{\infty}$ and, in which case, $||T_{\varphi}|| = ||\varphi||_{\infty}$. A Toeplitz operator T_{φ} is called *analytic* if $\varphi \in H^{\infty}$, i.e., φ is a bounded analytic function on the unit disc $\mathbb D$ and *coanalytic* if $\overline{\varphi} \in H^{\infty}$ where $\overline{\varphi}$ denotes the complex conjugate of φ . For $\lambda \in \mathbb D$, the *reproducing kernel* K_{λ} for H^2 is given by $K_{\lambda}(z) := \frac{1}{1-\overline{\lambda}z}$ and $\langle f, K_{\lambda} \rangle = f(\lambda)$ for all $f \in H^2$.

The study of complex symmetric operators and Toeplitz operators provides deep and important connections with various problems in the field of quantum mechanics (see [5,13,1]). In 1960s, A. Brown and P. Halmos [2] proved that T_{φ} is normal if and only if $\varphi = \alpha + \beta \rho$ where ρ is a real-valued function in L^{∞} and $\alpha, \beta \in \mathbb{C}$. In 1970, P. Halmos [9] raised for the problem of characterizing subnormal Toeplitz operators. It is apparent that every normal or analytic T_{φ} is subnormal. In general, T_{φ} may not be a complex symmetric operator. However, if T_{φ} is a complex symmetric and hyponormal operator, then T_{φ} is normal from [14]. Recently, K. Guo and S. Zhu [8] have raised the following interesting question.

Question. Characterize a complex symmetric Toeplitz operator on the Hardy space H^2 of the unit disk.

In this paper, we study properties of complex symmetric Toeplitz operators T_{φ} on the Hardy space H^2 . In Section 2, we provide a characterization of such an operator T_{φ} and we give a necessary and sufficient condition for a complex symmetric Toeplitz operator T_{φ} to be normal. In Section 3, we examine these T_{φ} with finite symbols.

2. Complex symmetric Toeplitz operators

In this section, we study complex symmetric Toeplitz operators T_{φ} on the Hardy space H^2 . In particular, we give a characterization of such operators. We first start with the following theorem.

Theorem 2.1. For $\varphi \in L^{\infty}$, let T_{φ} be a complex symmetric operator on H^2 . If T_{φ} is analytic or coanalytic, then φ is either identically zero on $\mathbb D$ or a nonzero constant function on $\mathbb D$.

Proof. Let φ be not identically zero on $\mathbb D$ and let T_{φ} be analytic. If $\varphi(\lambda)=0$ for some λ in $\mathbb D$, then $\varphi(z)\neq 0$ for all z in some open set U of $\mathbb D$ which does not contain λ . Since $T_{\varphi}^*K_{\lambda}=\overline{\varphi(\lambda)}K_{\lambda}=0$, $\|T_{\varphi}CK_{\lambda}\|=\|T_{\varphi}^*K_{\lambda}\|=0$, and so $T_{\varphi}CK_{\lambda}(z)=0$ for all $z\in\mathbb D$. Moreover, since $\varphi\in H^{\infty}$, $\varphi(z)CK_{\lambda}(z)=0$ for all $z\in\mathbb D$. This means that $CK_{\lambda}(z)=0$ for all $z\in U$ and hence $CK_{\lambda}\equiv 0$ on $\mathbb D$ by the identity theorem, which is a contradiction. Hence φ does not vanish on $\mathbb D$.

Now fix $\alpha \in \mathbb{D}$. Then

$$CT_{\varphi}^* K_{\alpha} - T_{\varphi} CK_{\alpha} = C\overline{\varphi(\alpha)} K_{\alpha} - T_{\varphi} CK_{\alpha}$$

Download English Version:

https://daneshyari.com/en/article/6417585

Download Persian Version:

https://daneshyari.com/article/6417585

Daneshyari.com