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In this paper, author proves that if X1 and X2 are Gâteaux differentiable space, 
then X1 and X2 have the ball-covering property if and only if (X1 ×X2, ‖ · ‖p) and 
(X1×X2, ‖ ·‖∞) have the ball-covering property, where ‖(x, y)‖p = (‖x‖p1 + ‖y‖p2)

1
p , 

p ∈ [1, +∞) and ‖(x, y)‖∞ = max{‖x‖ , ‖y‖}.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, ‖ · ‖) be a real Banach space. By xn
w→ x we denote that {xn}∞n=1 is weakly convergent to x. 

C(Cw) denotes closed hull of C (weak closed hull) and dist(x, C) denotes the distance of x and C. Let N, R
and R+ denote the set natural number, reals and nonnegative reals, respectively.

Let D be a nonempty open convex subset of X and f a real-valued continuous convex function on D. 
Recall that f is said to be Gateaux differentiable at the point x in D if the limit

df(x)(y) = lim
t→0

f(x + ty) − f(x)
t

(∗)

exists for all y ∈ X. When this is the case, the limit is a continuous linear function of y, denoted by df(x). 
If the difference quotient in (∗) converges to df(x)(y) uniformly for y in the unit ball, then f is said to 
be Frechet differentiable at x. X is called a weak Asplund space [Asplund space] or said to have the weak 
Asplund property if for every f and D as above, f is “generically” Gâteaux [Frechet] differentiable, that is, 
there exists a dense Gδ subset G of D such that f is Gâteaux [Frechet] differentiable at each point of G. X is 
called a Gâteaux differentiability space if every convex continuous function on it is Gâteaux differentiable 
at the points of a dense set. In 1933, Mazur proved that separable Banach spaces have the weak Asplund 
property (see [15]). Moreover, it is well known that if X is an Asplund space if and only if X∗ has the 
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Radon–Nikodym property, X is a Gâteaux differentiable space if and only if every weak∗ compact convex 
subset of X∗ is the weak∗ closed convex hull of its weak∗ exposed points. It is easy to see that

Asplund space ⇒ weak Asplund space ⇒ Gâteaux differentiable space.

It is well known there exists a weak Asplund space, but not Asplund space, for example, l1 is a weak 
Asplund space, but not Asplund space. In 2006, Waren B. Moors and Sivajah Somasundaram proved that 
there exists a Gâteaux differentiable space that is not a weak Asplund space (see [14]). In 2002, L. Cheng 
and M. Fabian proved that the product of a Gâteaux space and a separable space is a Gâteaux differentiable 
spaces (see [4]).

The study of geometric and topological properties of unit balls of Banach spaces plays a central rule 
in the geometry of Banach spaces. Almost all properties of Banach spaces, such as convexity, smoothness, 
reflexivity and the Radon–Nikodym property, can be viewed as properties of the unit ball. We should 
mention here that there are many topics studying the behaviour of collections of balls. For example, the 
Mazur intersection property, the packing sphere problem of unit balls, the measures of non-compactness, 
and the ball topology have all received a great deal of attention by many mathematicians.

Starting with a different viewpoint, a notion of ball-covering property is introduced by Cheng [1]:

Definition 1. A Banach space is said to have the ball-covering property if its unit sphere can be contained 
in the union of countably many open balls that do not contain the origin. In this case, we also say that the 
norm has the ball-covering property.

In [2], Cheng proved that if X is a locally uniformly convex space and B(X∗) is w∗-separable, then X
has the ball-covering property. In [7], it was established that for every ε > 0 every Banach space with a 
w∗-separable dual has an 1 + ε-equivalent norm with the ball-covering property. Clearly, every separable 
space has ball-covering property, but the converse version is not true. For example, �∞ is not a separable 
space, but �∞ has the ball-covering property (see [1]). In [18], Shang and Cui proved that if a separable space 
X has the Radon–Nikodym property, then X∗ has the ball-covering property. As a corollary, Shang and 
Cui proved that there exists a non-separable Orlicz function space LM such that LM has the ball-covering 
property. In [3], Cheng and Liu proved that by constructing the equivalent norms on �∞, there exists a 
Banach space (�∞, ‖ · ‖0) such that (�∞, ‖ · ‖0) does not possess the ball covering property. In [19], Shang 
and Cui proved that if X is separable, X is locally 2-uniformly convex and X is uniformly nonsquare, then 
there exists a sequence {xn}∞n=1 of strongly extreme points such that ∪∞

n=1 B(xn, rn) is a ball-covering of X, 
where supn≥1{rn} < 1. The paper is organized as follows. In Section 1, some necessary definitions and 
notations are collected. In Section 2, author proves that if X1 and X2 are Gâteaux differentiable space, 
then X1 and X2 have the ball-covering property if and only if (X1 ×X2, ‖ · ‖p) and (X1 ×X2, ‖ · ‖∞) have 
the ball-covering property, where ‖(x, y)‖p = (‖x‖p1 + ‖y‖p2)

1
p , p ∈ [1, +∞) and ‖(x, y)‖∞ = max{‖x‖ , ‖y‖}. 

The topic of this paper is related to the topic of [5,6,8–13,16,17,20,21]. First let us recall some definitions 
that will be used in the further part of this paper.

Definition 2. A point x ∈ S(X) is called a smooth point if it has an unique supporting functional fx. The 
set of all smooth points of X is denoted by SmoX. If every x ∈ S(X) is a smooth point, then X is called 
smooth.

It is well known that if x0 ∈ S(X) is a smooth point, then convex function f(x) = ‖x‖ is Gâteaux 
differentiable at x0.

Definition 3. A point x∗
0 ∈ C∗ is said to be weak∗ exposed point of C∗ if there exists x ∈ S(X) such that 

x∗
0(x) > x∗(x) whenever x∗ ∈ C∗ \ {x∗

0}.
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