

Twisted second moments of the Riemann zeta-function and applications

Nicolas Robles ${ }^{\text {a,* }}$, Arindam Roy ${ }^{\text {b }}$, Alexandru Zaharescu ${ }^{\text {b,c }}$
a Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
b Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
${ }^{c}$ Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

A R T I C L E IN F O

Article history:
Received 26 May 2015
Available online 14 September 2015
Submitted by B.C. Berndt

Keywords:

Riemann zeta-function
Twisted second moment Mollifier
Zeros on the critical line

Abstract

In order to compute a twisted second moment of the Riemann zeta-function, two different mollifiers, each being a combination of two different Dirichlet polynomials, were introduced separately by Bui, Conrey, and Young, and by Feng. In this article we introduce a mollifier which is a combination of four Dirichlet polynomials of different shapes. We provide an asymptotic result for the twisted second moment of $\zeta(s)$ for such choice of mollifier. A small increment on the percentage of zeros of the Riemann zeta-function on the critical line is given as an application of our results. © 2015 Elsevier Inc. All rights reserved.

1. Introduction

In [1], Balasubramanian, Conrey and Heath-Brown computed the twisted second moment of the Riemann zeta-function

$$
\begin{equation*}
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \bar{\psi} \psi\left(\frac{1}{2}+i t\right) d t \tag{1.1}
\end{equation*}
$$

where ψ is a Dirichlet polynomial of the type

$$
\begin{equation*}
\psi(s)=\sum_{n \leq T^{\theta}} \frac{a(n)}{n^{s}} \tag{1.2}
\end{equation*}
$$

and $a(n) \ll_{\varepsilon} n^{\varepsilon}$. The length T^{θ} of the polynomial is sensitive to the nature of the coefficients $a(n)$. They also obtained an explicit main term in their theorem for a particular choice of $\psi(s)$.

[^0]In [5], in order to obtain a higher percentage of zeros of the Riemann zeta-function on the critical line, Conrey needed to establish such type of second moment. In his result he made an ingenious choice of $a(n)$ which allowed him to push the value of θ from $1 / 2$ (see [10]) to $4 / 7$. The possibility of obtaining a mollifier by combining two Dirichlet polynomials of different shape had been considered by Lou [11]. In [2], Bui, Conrey, and Young extended (1.1) with an explicit main term for a more sophisticated choice of $a(n)$. They considered $\psi(s)$ as a convex combination of two Dirichlet polynomials of different shape. Introducing such two-piece mollifier increases the complexity and technicality of the computation of the main term. Another such two-piece mollifier was introduced by Feng [9] and the main term was computed explicitly.

Crucial ingredients to obtaining the error term in [9] were Lemmas 1 and 2. To reach $\theta_{1}<4 / 7-\varepsilon$ in [5], it was required that $a(n)=\mu(n) F(n)$, for a smooth function F. In [9], the coefficient $a(n)$ in the mollifier was not of the form $\mu(n) F(n)$, for some smooth function F, and it is not clear how the techniques of [5] can be directly applied to the proofs of Lemmas 1 and 2 of [9].

Independently of each other, in [2] and [9], the possibility of obtaining a $\psi(s)$ by combining these three Dirichlet polynomials of different shape was mentioned. One can obtain the main term of (1.1) for such choice of $\psi(s)$ by going over some subtle technicalities in the calculations.

In the present paper we introduce a new mollifier $\psi(s)$ which is a convex combination of four Dirichlet polynomials of different shape. Let

$$
\chi(s):=\pi^{s-1 / 2} \frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}=2(2 \pi)^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2}\right) .
$$

We will use the convention

$$
\begin{equation*}
P_{i}[n]:=P_{i}\left(\frac{\log \left(y_{i} / n\right)}{\log y_{i}}\right) \quad \text { and } \quad \tilde{P}_{k}[n]:=\tilde{P}_{k}\left(\frac{\log \left(y_{4} / n\right)}{\log y_{4}}\right) \tag{1.3}
\end{equation*}
$$

where P 's are polynomials. Recall that $\mu(n)$ denotes the Möbius function, also $\mu_{2}(n)$ and $\mu_{3}(n)$ will denote the coefficients in the Dirichlet series of $1 / \zeta^{2}(s)$ and $1 / \zeta^{3}(s)$, respectively, for $\operatorname{Re}(s)>1$. Also, let $d_{k}(n)$ denote the number of ways an integer n can be written as a product of $k \geq 2$ fixed factors. Note that $d_{1}(n)=1$ and that $d_{2}(n)=d(n)$ is the number of divisors of n. With this in mind, we define

$$
\begin{equation*}
\psi(s):=\psi_{1}(s)+\psi_{2}(s)+\psi_{3}(s)+\psi_{4}(s) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{1}(s)=\sum_{n \leq y_{1}} \frac{\mu(n) n^{\sigma_{0}-1 / 2}}{n^{s}} P_{1}[n] \tag{1.5}
\end{equation*}
$$

introduced in [5],

$$
\begin{equation*}
\psi_{2}(s)=\chi\left(s+\frac{1}{2}-\sigma_{0}\right) \sum_{h k \leq y_{2}} \frac{\mu_{2}(h) h^{\sigma_{0}-1 / 2} k^{1 / 2-\sigma_{0}}}{h^{s} k^{1-s}} P_{2}[h k] \tag{1.6}
\end{equation*}
$$

introduced in [2],

$$
\begin{equation*}
\psi_{3}(s)=\chi^{2}\left(s+\frac{1}{2}-\sigma_{0}\right) \sum_{h k \leq y_{3}} \frac{\mu_{3}(h) d(k) h^{\sigma_{0}-1 / 2} k^{1 / 2-\sigma_{0}}}{h^{s} k^{1-s}} P_{3}[h k] \tag{1.7}
\end{equation*}
$$

introduced in the present paper, and

https://daneshyari.com/en/article/6417611

Download Persian Version:

https://daneshyari.com/article/6417611

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nicolas.robles@math.uzh.ch (N. Robles), roy22@illinois.edu (A. Roy), zaharesc@illinois.edu (A. Zaharescu).

