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Suppose A is a subset of a Banach lattice (Banach algebra) X. We look for “large” 
sublattices (resp. subalgebras) of A. If X is a Banach lattice, we prove: (1) If Y
is a closed subspace of X of codimension at least n, then (X\Y ) ∪ {0} contains a 
sublattice of dimension n. (2) If Y is a closed infinite codimensional ideal in X, then 
(X\Y ) ∪{0} contains a closed infinite dimensional sublattice. (3) If the order in X is 
induced by a 1-unconditional basis, and Y is a closed infinite codimensional subspace 
of X, then (X\Y ) ∪ {0} contains a closed infinite dimensional ideal. Further, we 
show that (4) (�p\(∪q<p�q)) ∪ {0} contains a sublattice which is dense in �p, and 
that (5) the sets L1(T)\(∪p>1Lp(T)) ∪ {0} and S∞\(∪p<∞Sp) ∪ {0} contain a 
dense subalgebra with a continuum of free generators (here Sp denotes the Schatten 
p-space).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We are motivated by the recent survey of lineability and spaceability [9]. Recall that A ⊂ X is called 
lineable (spaceable, densely lineable) if A ∪ {0} contains an infinite dimensional subspace (resp. an infinite 
dimensional closed subspace, an infinite dimensional subspace dense in X).

If X is a Banach algebra, we say that A ⊂ X is algebrable if A ∪{0} contains a subalgebra B so that any 
family of generators of B is infinite. We say that A is densely algebrable if, in addition, B is dense in A.

In this paper, we search for large sublattices in subsets of Banach lattices. Suppose X is an infinite 
dimensional Banach lattice. A subset A ⊂ X is (completely) latticeable if X contains a (complete) infinite 
dimensional sublattice Z so that Z ⊂ A ∪ {0}.

As far as we know, the present paper is the first systematic investigation of latticeability. Even the term 
“latticeability” has not appeared previously – although, in fact, [1,21] produce atomic sublattices while 
proving the spaceability of certain sets in rearrangement invariant spaces. One should also mention the 
related notion of “coneability”, studied in [14].
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In Section 2, we look for sublattices in complements of closed subspaces of a Banach lattice. We start 
in the finite codimensional case: if Y is a subspace of a Banach lattice X of codimension n < ∞, then 
(X\Y ) ∪ {0} contains an n-dimensional lattice (Theorem 2.1). Further, we show that complements of finite 
dimensional subspaces of a Banach lattice, and of infinite codimensional ideals, are completely latticeable 
(Propositions 2.4 and 2.8).

If the order of X is determined by a 1-unconditional basis, then Proposition 2.9 shows that (X\Y ) ∪{0}
contains a closed infinite dimensional ideal. Some partial results on complements of subspaces in Köthe 
function spaces are also established (Propositions 2.13, 2.15).

In Section 3 (Theorem 3.1) we prove that �p\(∪q<p�q) is densely latticeable – that is, (�p\(∪q<p�q)) ∪{0}
contains a sublattice which is dense in �p.

In Section 4, we consider algebrability of subsets of a Banach algebra X. We prove that L1(T)\
(∪p>1Lp(T)) is densely maximally algebrable (Proposition 4.1) – that is, it contains a dense subalgebra 
W so that every set generating W must have the cardinality of continuum. Previously, similar results were 
obtained for c0\(∪q<∞�q) [5] and C0(R)\(∪q<∞Lq(R)) [13]. In the non-commutative setting, we establish in 
Proposition 4.2 that S∞\

(
∪p<∞ Sp

)
is densely maximally algebrable (here Sp is a p-Schatten space on �2). 

Here, we should also note a plethora of results on spaceability and dense lineability of Lp(μ)\(∪q∈SLq(μ))
(where S = (p, ∞), (0, p), or R\{p}, and μ is not necessarily σ-finite), recently established in e.g. [6–8,11].

Finally, in Section 5, we prove (Proposition 5.1) that, for 1 < p < ∞, the set of non-regular compact 
operators on �p is densely maximally lineable, and spaceable.

For the sake of simplicity, we work with real Banach lattices, while all Banach algebras are assumed to 
be complex. We use standard notation and results (see e.g. [3,19]). We denote by B(·) the closed unit ball of 
a space. The unit circle is denoted by T, and equipped with the translation-invariant Lebesgue probability 
measure μ0.

2. Latticeability: complements of closed subspaces

We investigate the “largest” sublattice of X contained in the complement of a closed subspace Z ⊂ X. 
Note that, if Y is a closed subspace of a Banach space X of finite codimension, then clearly (X\Y ) ∪ {0} con-
tains a subspace Z, with dimW = dimX/Y . Furthermore, if Y is a closed subspace of X with dimX/Y = ∞, 
then (X\Y ) ∪ {0} contains a closed infinite dimensional subspace W . This result (attributed to N. Kalton) 
goes back to [25]. Related results concerning operator ranges were established in [18].

2.1. The finite codimensional case

In this subsection, we are assuming that Y is a finite codimensional subspace of a Banach lattice X. We 
are looking for a sublattice W ⊂ X, so that W ∩ Y = {0}. We recall that any finite dimensional Banach 
lattice is spanned by its atoms, see [22, Section II.3] or [23, Proposition I.4.19].

Theorem 2.1. If Y is a closed subspace of a Banach lattice X with dimX/Y ≥ n, then there exists an 
n-dimensional sublattice W ⊂ X so that W ∩ Y = {0}.

Let us start with the case of finite dimensional X.

Lemma 2.2. Suppose X is a Banach lattice of dimension n, and Y is a subspace of X of dimension m < n. 
Then X contains a sublattice W so that dimW = n −m, and W ∩ Y = {0}.

Proof. As noted above, X is spanned by its atoms, so we can identify X (as a vector lattice) with Rn

(or Cn). By standard linear algebra, we can assume (up to relabeling) that Y ⊥ ⊂ Rn has a basis z1 =
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