Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

An estimate of the oscillation of harmonic reproducing kernels with applications

Adem Ersin Üreyen

Department of Mathematics, Anadolu University, 26470 Eskisehir, Turkey

A R T I C L E I N F O

Article history: Received 25 June 2015 Available online 24 September 2015 Submitted by J.A. Ball

Keywords: Harmonic Besov space Reproducing kernel Oscillation

1. Introduction

For $n \geq 2$, let \mathbb{B} be the open unit ball in \mathbb{R}^n and ν be the volume measure on \mathbb{B} normalized so that $\nu(\mathbb{B}) = 1$. For $\alpha \in \mathbb{R}$, we define the weighted volume measures

$$d\nu_{\alpha}(x) = \frac{1}{V_{\alpha}} \left(1 - |x|^2\right)^{\alpha} d\nu(x).$$

These measures are finite only when $\alpha > -1$ and in this case we choose V_{α} so that $\nu_{\alpha}(\mathbb{B}) = 1$. For $\alpha \leq -1$, we set $V_{\alpha} = 1$. We denote the Lebesgue classes with respect to ν_{α} by L^{p}_{α} .

Let $h(\mathbb{B})$ be the space of all complex valued harmonic functions on \mathbb{B} . For $0 and <math>\alpha > -1$, the well-known harmonic weighted Bergman space b^p_{α} is $h(\mathbb{B}) \cap L^p_{\alpha}$. For $1 \le p < \infty$, these spaces are extended to all $\alpha \in \mathbb{R}$ in [8], where they are called harmonic Besov spaces.

For $1 \leq p < \infty$ and $\alpha \in \mathbb{R}$, pick a nonnegative integer N so that

$$\alpha + pN > -1. \tag{1}$$

The harmonic Besov space b^p_{α} is the space of all $f \in h(\mathbb{B})$ such that

 $\label{eq:http://dx.doi.org/10.1016/j.jmaa.2015.09.030} \ 0022\text{-}247X/\ensuremath{\odot}\ 2015$ Elsevier Inc. All rights reserved.

ABSTRACT

We estimate the oscillation of harmonic reproducing kernels. As an application of this estimation we obtain a double integral characterization of harmonic Besov spaces.

@ 2015 Elsevier Inc. All rights reserved.

E-mail address: aeureyen@anadolu.edu.tr.

$$(1-|x|^2)^N \partial^m f \in L^p_\alpha$$

for every multi-index $m = (m_1, \dots, m_n)$ with |m| = N. Here $|m| = m_1 + \dots + m_n$ and

$$\partial^m = \frac{\partial^{|m|}}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}.$$

The space b_{α}^{p} is independent of the choice of N as long as (1) is satisfied, and instead of partial derivatives one can also use radial derivatives or certain radial differential operators. These are studied in detail in [8].

When $\alpha > -1$, one can take N = 0 and the resulting space is the usual harmonic weighted Bergman space. When $\alpha = -n$, the space b_{-n}^p is the standard harmonic Besov space. If also p = 2, then b_{-n}^2 is the harmonic Dirichlet space. If $\alpha = -1$ and p = 2, then b_{-1}^2 is the harmonic Hardy space h^2 . We note that holomorphic analogues of the above spaces are studied in [11] and [21].

The spaces b_{α}^2 , $\alpha \in \mathbb{R}$, are reproducing kernel Hilbert spaces with kernel $R_{\alpha}(x, y)$. These kernels are well-known for $\alpha > -1$ [14] and have been extended to all $\alpha \in \mathbb{R}$ in [7] and [8]. The main result of this work is the following estimate of the oscillation of reproducing kernels. We write

$$[x, y] := \sqrt{1 - 2x \cdot y + |x|^2 |y|^2},$$

where $x \cdot y$ is the usual inner product of x and y in \mathbb{R}^n .

Theorem 1.1. Let $\alpha > -n$ and $0 \le \tau \le 1$. Then

$$\frac{|R_{\alpha}(x,u) - R_{\alpha}(y,u)|}{|x-y|} \lesssim \frac{1}{[x,y]^{1-\tau}} \left(\frac{1}{[x,u]^{n+\alpha+\tau}} + \frac{1}{[y,u]^{n+\alpha+\tau}}\right)$$

for every $x, y, u \in \mathbb{B}$ with $x \neq y$.

We note that in Theorem 1.1 we can choose any τ between 0 and 1. This flexibility will later be very useful.

As an application of the above theorem we consider double integral characterizations of harmonic Besov spaces and extend previous results of [5]. For $f \in h(\mathbb{B})$, we define

$$Lf(x,y) := \frac{f(x) - f(y)}{|x - y|}, \quad x \neq y$$

and

$$\Lambda f(x,y):=\frac{f(x)-f(y)}{[x,y]},\quad x,y\in\mathbb{B}.$$

Characterizations of holomorphic or harmonic Bergman, Besov or Bloch spaces in terms of Lf or Λf start with [9] (in the holomorphic case in Λf instead of [x, y] one uses $|1 - \langle x, y \rangle|$ with $\langle x, y \rangle$ being the inner product in \mathbb{C}^n). Further results with different ranges of α , p or n are obtained in [2,5,12,13,15–19].

The following two theorems are proved in [5].

Theorem A. (See [5].) Suppose $\alpha > -1$, $0 and <math>f \in h(\mathbb{B})$. The following are equivalent:

- (a) $f \in b^p_{\alpha}$,
- (b) $Lf \in L^p(\nu_\alpha \times \nu_\alpha),$
- (c) $\Lambda f \in L^p(\nu_\alpha \times \nu_\alpha).$

Download English Version:

https://daneshyari.com/en/article/6417641

Download Persian Version:

https://daneshyari.com/article/6417641

Daneshyari.com