An estimate of the oscillation of harmonic reproducing kernels with applications

Adem Ersin Üreyen
Department of Mathematics, Anadolu University, 26470 Eskiṣehir, Turkey

A R T I C L E I N F O

Article history:

Received 25 June 2015
Available online 24 September 2015
Submitted by J.A. Ball

Keywords:

Harmonic Besov space
Reproducing kernel
Oscillation

ABSTRACT

We estimate the oscillation of harmonic reproducing kernels. As an application of this estimation we obtain a double integral characterization of harmonic Besov spaces.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For $n \geq 2$, let \mathbb{B} be the open unit ball in \mathbb{R}^{n} and ν be the volume measure on \mathbb{B} normalized so that $\nu(\mathbb{B})=1$. For $\alpha \in \mathbb{R}$, we define the weighted volume measures

$$
d \nu_{\alpha}(x)=\frac{1}{V_{\alpha}}\left(1-|x|^{2}\right)^{\alpha} d \nu(x) .
$$

These measures are finite only when $\alpha>-1$ and in this case we choose V_{α} so that $\nu_{\alpha}(\mathbb{B})=1$. For $\alpha \leq-1$, we set $V_{\alpha}=1$. We denote the Lebesgue classes with respect to ν_{α} by L_{α}^{p}.

Let $h(\mathbb{B})$ be the space of all complex valued harmonic functions on \mathbb{B}. For $0<p<\infty$ and $\alpha>-1$, the well-known harmonic weighted Bergman space b_{α}^{p} is $h(\mathbb{B}) \cap L_{\alpha}^{p}$. For $1 \leq p<\infty$, these spaces are extended to all $\alpha \in \mathbb{R}$ in [8], where they are called harmonic Besov spaces.

For $1 \leq p<\infty$ and $\alpha \in \mathbb{R}$, pick a nonnegative integer N so that

$$
\begin{equation*}
\alpha+p N>-1 . \tag{1}
\end{equation*}
$$

The harmonic Besov space b_{α}^{p} is the space of all $f \in h(\mathbb{B})$ such that

[^0]$$
\left(1-|x|^{2}\right)^{N} \partial^{m} f \in L_{\alpha}^{p},
$$
for every multi-index $m=\left(m_{1}, \cdots, m_{n}\right)$ with $|m|=N$. Here $|m|=m_{1}+\ldots+m_{n}$ and
$$
\partial^{m}=\frac{\partial^{|m|}}{\partial x_{1}^{m_{1}} \ldots \partial x_{n}^{m_{n}}}
$$

The space b_{α}^{p} is independent of the choice of N as long as (1) is satisfied, and instead of partial derivatives one can also use radial derivatives or certain radial differential operators. These are studied in detail in [8].

When $\alpha>-1$, one can take $N=0$ and the resulting space is the usual harmonic weighted Bergman space. When $\alpha=-n$, the space b_{-n}^{p} is the standard harmonic Besov space. If also $p=2$, then b_{-n}^{2} is the harmonic Dirichlet space. If $\alpha=-1$ and $p=2$, then b_{-1}^{2} is the harmonic Hardy space h^{2}. We note that holomorphic analogues of the above spaces are studied in [11] and [21].

The spaces $b_{\alpha}^{2}, \alpha \in \mathbb{R}$, are reproducing kernel Hilbert spaces with kernel $R_{\alpha}(x, y)$. These kernels are well-known for $\alpha>-1[14]$ and have been extended to all $\alpha \in \mathbb{R}$ in [7] and [8]. The main result of this work is the following estimate of the oscillation of reproducing kernels. We write

$$
[x, y]:=\sqrt{1-2 x \cdot y+|x|^{2}|y|^{2}},
$$

where $x \cdot y$ is the usual inner product of x and y in \mathbb{R}^{n}.
Theorem 1.1. Let $\alpha>-n$ and $0 \leq \tau \leq 1$. Then

$$
\frac{\left|R_{\alpha}(x, u)-R_{\alpha}(y, u)\right|}{|x-y|} \lesssim \frac{1}{[x, y]^{1-\tau}}\left(\frac{1}{[x, u]^{n+\alpha+\tau}}+\frac{1}{[y, u]^{n+\alpha+\tau}}\right),
$$

for every $x, y, u \in \mathbb{B}$ with $x \neq y$.
We note that in Theorem 1.1 we can choose any τ between 0 and 1 . This flexibility will later be very useful.

As an application of the above theorem we consider double integral characterizations of harmonic Besov spaces and extend previous results of [5]. For $f \in h(\mathbb{B})$, we define

$$
L f(x, y):=\frac{f(x)-f(y)}{|x-y|}, \quad x \neq y
$$

and

$$
\Lambda f(x, y):=\frac{f(x)-f(y)}{[x, y]}, \quad x, y \in \mathbb{B} .
$$

Characterizations of holomorphic or harmonic Bergman, Besov or Bloch spaces in terms of $L f$ or Λf start with [9] (in the holomorphic case in Λf instead of $[x, y]$ one uses $|1-\langle x, y\rangle|$ with $\langle x, y\rangle$ being the inner product in $\left.\mathbb{C}^{n}\right)$. Further results with different ranges of α, p or n are obtained in $[2,5,12,13,15$-19].

The following two theorems are proved in [5].
Theorem A. (See [5].) Suppose $\alpha>-1,0<p<n+\alpha$ and $f \in h(\mathbb{B})$. The following are equivalent:
(a) $f \in b_{\alpha}^{p}$,
(b) $L f \in L^{p}\left(\nu_{\alpha} \times \nu_{\alpha}\right)$,
(c) $\Lambda f \in L^{p}\left(\nu_{\alpha} \times \nu_{\alpha}\right)$.

https://daneshyari.com/en/article/6417641

Download Persian Version:

https://daneshyari.com/article/6417641

Daneshyari.com

[^0]: E-mail address: aeureyen@anadolu.edu.tr.
 http://dx.doi.org/10.1016/j.jmaa.2015.09.030
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

