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1. Introduction and results
In this paper, we perform an analysis of the following semilinear problem with boundary blow-up:

Au = |[ulP~ u+ h(x) in Q (1.1)

U= 00 on 09, ’
where € is a smooth bounded domain of RY, p > 1 and h € C(Q). The case h = 0 is well understood and
has been widely analyzed. By using for instance the results in [11] and [2], it is known that there exists a
unique positive solution U € C'*°(£2) such that

Ux) ~ (a(a+1)77d(z)"* as z — 09,

where d(z) = dist(z, 9Q) and

* Correspondence to: Departamento de Andlisis Matemdtico, Universidad de La Laguna, C/. Astrofisico Francisco Sanchez s/n,
38271, La Laguna, Spain.
E-mail address: jjgarmel@ull.es.

http://dx.doi.org/10.1016/j.jmaa.2015.09.041
0022-247X/© 2015 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jmaa.2015.09.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:jjgarmel@ull.es
http://dx.doi.org/10.1016/j.jmaa.2015.09.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.09.041&domain=pdf

J. Garcia-Melidn / J. Math. Anal. Appl. 434 (2016) 872-881 873

2
a= P (1.2)
(also, it can be easily seen that no sign-changing solutions may exist). However, a complete analysis of
problem (1.1) for general continuous functions h has not been carried out, as far as we know, except for
some partial results which we now comment.

In [4] the existence and uniqueness of a positive solution was shown in the case h < 0 and with a suita];le
growth near 02, while in [14], the case where h is also negative but small when compared with d(x)frpl
near 0f) was considered. Finally, in [15] some particular positive functions h vanishing on the boundary were
analyzed, whereas in [8] the case h(x) = —Cyd(z)~7, with Cp,~y > 0, was studied. But, as it stands, there
does not seem to be available even an existence result dealing with changing sign functions h. Moreover,
when h is singular and positive near 052 nothing seems to be known even with regard to existence. We refer
the interested reader to the papers [5] and [3] for related developments (see also the book [9] for more on
large solutions).

Therefore our objective in the present paper is to partly fill this gap and try to understand a little better
the features of problem (1.1). Let us remark first that, especially in the case where h is positive somewhere,
it might not be reasonable to look for nonnegative solutions of (1.1). And even if a nonnegative solution
exists, it is not necessarily positive, since the strong maximum principle can only be applied if A < 0.

Let us also mention that we will always be dealing with weak solutions u € H. (), which according to
standard regularity verify u € C’llocn(Q) for every n € (0,1) (cf. [10]).

We begin by considering existence of solutions of (1.1). When the function h is negative in €2, existence (of
nonnegative solutions) holds in general, so that only the positive part of h needs to be restricted. Actually,
it is only necessary that h does not grow too fast near 92 in order to obtain a solution. To make this precise,
consider the function

f@) =ala+1)t—t", t>0,

where « is given by (1.2). Since p > 1, it is clear that f is bounded from above, so we can denote A =
sup,~ f(t). Although its exact value will be of no importance for our proofs, we just mention that with the
aid of standard calculus it can be seen that

A=l (2

Let us state our result on existence of solutions.

Theorem 1. Let 2 be a bounded C? domain of RN and assume p > 1 and h € C(Q) verifies

L :=limsup d(l’)%h((b) <A. (1.3)
z—0Q

Then problem (1.1) admits at least a solution uw. Moreover, u is the maximal solution of the problem and it
verifies

im i T y(z) >
lglcrggsl)f d(z)r—Tu(z) > &, (1.4)

where £ is the largest root of the equation f(t) = L.

Let us mention that the obtention of a minimal solution (1.1) does not seem to be an easy task in general.
As a rule, such a solution is obtained as the limit of solutions of the same equation with finite boundary
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