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We establish the porosity results on the existence and the topological structure 
of fixed points for nonexpansive set-valued maps in hyperbolic spaces, which in 
particular extend and/or improve some known results in this direction.
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1. Introduction

The study of the existence problem of fixed points for maps in geodesic space dates back at least to 
the works due to Kirk in [20,21], where it was proved that every nonexpansive (single-valued) map defined 
on a bounded closed convex subset of a complete CAT(0) space has a fixed point. This existence result 
was followed by a series of new works by different authors, see for example [1–3,7,8,13,22,23,25,34], mainly 
focusing on CAT(0) space and on extending Kirk’s results from the single-valued case to the set-valued 
case. For example, Dhompongsa et al. in [13] showed that a nonexpansive compact-valued map defined on 
a convex subset, which satisfies the “weakly inward condition”, has a fixed point; while, in an R-tree, the 
special CAT(0) space, Markin in [23] showed that a set-valued “generalized” nonexpansive map has a fixed 
point. Other extensions from CAT(0) space to CAT(κ) space can be found in [16].

As is known, for a set-valued map, in the Banach space setting (even for a single-valued maps), the fixed 
point set is not necessarily nonempty. Thus it makes sense to explore if the set of nonexpansive (single-valued 
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or set-valued) maps that have fixed points is generic. In the Banach space setting, De Blasi and Majak 
showed in [10] that the set of all single-valued nonexpansive maps without fixed point is σ-porous; this 
result was extended in [12,26,31,32] to the case of nonexpansive compact-valued maps. However, it seems 
little extensions to be known in general geodesic spaces except the work due to Reich and Zaslavski in [30], 
where the porosity property on the existence of fixed points for single-valued maps in hyperbolic spaces was 
established.

Another interesting topic concerning nonexpansive set-valued maps is the topological structure of fixed 
point sets because, unlike in the single-valued case (cf. [33]), the fixed point set for a nonexpansive set-valued 
map (even for strictly contractive maps) is not necessarily a singleton (if it is nonempty). In the Banach 
space setting, De Blasi and Myjak et al. proved in [12] that the fixed point set of most (in the sense of 
Baire catalog) convex and compact-valued nonexpansive maps on a closed, bounded and convex subset with 
nonempty interior is a nonempty and compact Rδ-set; this result was improved in [26] by showing that 
the set of all convex and compact-valued nonexpansive maps, for which the fixed point set fails to be a 
nonempty Rδ-set, is σ-porous.

The purpose of the present paper is to study the porosity properties on the existence and the topological 
structure of fixed points for nonexpansive set-valued maps in hyperbolic spaces, which contains Banach 
spaces, CAT(0) spaces, in particular, all Hadamard manifolds, and the Hilbert ball [17] as special cases (see 
Remark 2.1). The main results are stated in Theorems 3.1 and 4.2, which respectively show that the set of 
all nonexpansive compact set-valued maps (from a star-shaped set to an admissible family) without fixed 
points is σ-porous and that the set of all nonexpansive convex and compact set-valued maps on a bounded 
closed convex subset, for which the fixed point set fails to be a nonempty Rδ-set, is σ-porous. These results 
extend and/or improve the corresponding results in [10,12,26,30]. In particular, Corollary 4.1 improves [12, 
Theorem 3.1] and [26, Theorem 3] by removing the nonempty interior assumption; while Theorem 4.2 seems 
new, even in the case when E is a CAT(0) space or Hilbert ball.

The paper is organized as follows. Section 2 contains notations, terminology and lemmas which will be 
used later. In Sections 3 and 4, the porosity properties on the existence and the topological structure of 
fixed points for nonexpansive set-valued maps are presented respectively.

2. Preliminaries

Let (E, d) be a metric space. A geodesic in E is an isometry from R into E (we may also refer to the 
image of isometry as a geodesic). Let x, y ∈ E. A geodesic joining x to y is a map γ : [0, l] → E, where 
[0, l] ⊆ R, such that γ(0) = x, γ(l) = y and d(γ(t), γ(t′)) = |t − t′| for t, t′ ∈ [0, l], and the image γ([0, l]) of 
γ forms a geodesic segment joining x to y. Note that the geodesic segment joining x to y is not necessarily 
unique. The space (E, d) is called a geodesic space if each pair of two points of E are joined by a geodesic 
segment. Let A ⊆ E be a bounded subset. We use A and diamA to denote the closure and diameter of A, 
respectively; while the distance function associated to A is defined by

d(x,A) := inf
a∈A

d(x, a), ∀x ∈ E. (2.1)

For any r > 0, we use B(A, r) and U(A, r) to denote the set of all y ∈ E such that d(y, A) ≤ r and 
d(y, A) < r respectively. That is,

B(A, r) := {y ∈ E : d(y,A) ≤ r}; U(A, r) := {y ∈ E : d(y,A) < r}. (2.2)

In particular, in the special case when A = {a}, we write B(a, r) and U(a, r) for B(A, r) and U(A, r) to 
denote the closed and open ball with center a and radius r, respectively. Let Λ denote the set of all geodesic 
segments in E. Definitions 2.1 and 2.2 below are taken from [4] and [29], respectively.
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