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Projective structures have successfully been used for the construction of measures 
in the framework of loop quantum gravity. In the present paper, we establish such 
structures for the configuration space R �RBohr, recently introduced in the context of 
homogeneous isotropic loop quantum cosmology. In contrast to the traditional space 
RBohr, the first one is canonically embedded into the quantum configuration space 
of the full theory. In particular, for the embedding of states into a corresponding 
symmetric sector of loop quantum gravity, this is advantageous. However, in contrast 
to the traditional space, there is no Haar measure on R �RBohr defining a canonical 
kinematical L2-Hilbert space on which operators can be represented. The introduced 
projective structures allow to construct a family of natural measures on R � RBohr
whose corresponding L2-Hilbert spaces we finally investigate.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the framework of loop quantum gravity (LQG), measures are usually constructed by means of projective 
structures on the quantum configuration space of interest. For instance, the Ashtekar–Lewandowski measure 
arises in this way [3], and the same is true for the Haar measure on the Bohr compactification RBohr of R [16].
This has been used as quantum configuration space for homogeneous isotropic loop quantum cosmology 
(LQC); a symmetry reduced version of LQG designed to describe the early universe near the Big Bang [4].
Unfortunately, there is no continuous embedding of RBohr into the quantum configuration space of LQG 
which additionally extends the embedding of the respective reduced classical configuration space [7]. This 
property, however, is crucial for the embedding approach for states formulated in [5].

Now, non-embeddability arises from the fact that, in contrast to the full theory, the cosmological quantum 
configuration space has been defined by means of linear curves instead of all the embedded analytic ones [7].
Thus, to overcome this problem, in [11] the embedded analytic curves were used to define the reduced 
quantum space as well; now being given by R = R �RBohr. In particular, the embedding approach from [5]
here can be applied once a reasonable measure has been fixed. Now, since no Haar measure exists on R [13],
such measures have to be constructed by hand.
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In the present paper, we attack this issue by means of projective structures on R which we then use to 
motivate the family of normalized Radon measures

μρ,t(A) = t · ρ(λ)(A ∩ R) + (1 − t) · μBohr(A ∩ RBohr) ∀A ∈ B(R) (1)

for 0 ≤ t ≤ 1 and ρ(λ) the push forward of the Lebesgue measure λ on (0, 1) by some homeomorphism 
ρ: (0, 1) → R. For this, we first reformulate the definition of a projective limit in a way more practicable 
for defining measures on compact Hausdorff spaces, such as, e.g., R. Then, we motivate a certain family of 
projective structures which will provide us with the measures (1). As we will see, these measures give rise 
to only two different Hilbert space structures on R. More precisely, up to canonical isomorphisms, we will 
have the following three cases:

L2 (R, λ) , L2 (R, λ) ⊕ L2 (RBohr, μBohr) , L2 (RBohr, μBohr) ,

whereby L2 (R, λ)⊕L2 (RBohr, μBohr) and L2 (RBohr, μBohr) are isometrically isomorphic, just by dimensional 
arguments. Anyhow, since L2 (R, λ) is separable and L2 (RBohr, μBohr) is not so, there cannot exist any 
isometric isomorphism between these two spaces.

This paper is organized as follows:

� In Section 2, we fix the notations and provide a characterization of projective limits convenient for 
defining measures. In Section 3, we briefly review some facts on invariant homomorphisms [13] that we 
will need in the main part of this paper.

� In Section 4, we first discuss some elementary properties of the space R. In particular, we prove a 
uniqueness result concerning the assumptions made in [9] to the inner product on C0(R) ⊕ CAP(R).
Then, we investigate how to write R as projective limit, in order to construct reasonable Radon measures 
thereon. Here, we discuss several possibilities, finally leading to the projective structures presented in the 
third part of Section 4. Basically, there we will use the fact that for each nowhere vanishing1 f ∈ C0(R)
the functions {f} �{χl}l∈R with χl: x 	→ eilx generate the C∗-algebra C0(R) ⊕CAP(R). Then, each such 
f which is in addition injective will give rise to a projective structure similar to that one introduced 
in [16] for the space RBohr. In the last part, we finally use these structures to construct a family of 
normalized Radon measures on R which we then show to define two different non-isomorphic L2-Hilbert 
spaces on R.

2. Preliminaries

We start this section by fixing the notations. Then, we give a short introduction into projective structures 
on compact Hausdorff spaces and consistent families of normalized Radon measures.

2.1. Notations

A curve γ in a manifold M is a continuous map γ: I → M for I ⊆ R an interval, i.e., of the form 
[a, b], [a, b), (a, b] or (a, b) for a < b. Then, the curve γ is said to be of class Ck iff M is a Ck-manifold and 
iff there is a Ck-curve γ′: (a′, b′) → M with I ⊆ (a′, b′) and γ′|I = γ. By a path, we will understand a curve 
which is C∞ or analytic (Cω) and defined on some closed interval.

1 Here C0(R) denotes the set of continuous functions on R that vanish at infinity.
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