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An optimal control problem for continuous time systems described by a special 
class of multi-valued mappings and quasi-concave utility functions is considered. 
The objective is defined as an analogue of the terminal functional defined over an 
infinite time horizon. An upper bound of this functional over all solutions to the 
system is established. The turnpike property is proved which states that all optimal 
solutions converge to some unique optimal stationary point.
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1. Introduction

In this paper the turnpike property is investigated for a special class of non-convex optimal control 
problems in continuous time. Simply put this property states that, regardless of initial conditions, all 
optimal trajectories spend most of the time within a small neighborhood of some optimal stationary point 
when the planning period is long enough. For a classification of different definitions of the turnpike property, 
we refer the reader to [1,5,13,16,24], and also [2] for the so called exponential turnpike property. Possible 
applications in Markov Games can be found in a recent study [11].

Many approaches have been developed when considering continuous time and discrete time systems. The 
type of functional involved turns out to be very crucial in the proof of the turnpike property. Discounted and 
undiscounted integrals are the most commonly studied functionals. Among the most successful approaches 
developed for these types of functionals, we mention the approaches developed by Rockafellar [21,22] and 
by Scheinkman, Brock and collaborators (see, for example, [12]). Several other approaches in this area have 
been developed including those considering special classes of problems (e.g. [10,17,23,25]). An interesting 
class of control problems considered in [8,9] involves long run average cost functions where the asymptotic 
behavior of optimal solutions is defined in terms of a probability measure.
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This paper considers a special class of terminal functionals defined as a lower limit at infinity of utility 
functions. This approach is introduced in [14] where stability results are established for some classes of 
non-convex problems with applications to environment pollution models. This class of terminal functionals 
is also used to establish the turnpike theory in terms of statistical convergence [15,18] and A-statistical 
convergence [4], where the convergence of optimal trajectories to some stationary point is proved in the 
sense of “weak” convergence while ordinary convergence may not be true.

In this paper the turnpike property is established for optimal control problems involving continuous time 
systems described by differential inclusions. It generalizes some results from [14] obtained for a particular 
macroeconomic model of air pollution and establishes the turnpike property for a much broader class of 
optimal control problems by relaxing the assumptions imposed on the set of stationary points as well as on 
the utility function.

In this study the set of stationary points is not assumed to be bounded as required in the proof of 
the turnpike property in [14]. Moreover, the utility function is assumed to be quasi concave (instead of 
concavity in [14]). Obviously, a concave function is also quasi concave but not vice versa; for example, 
any monotonically increasing or decreasing function is quasi concave. Note that utility functions are often 
used to describe preferences that are usually assumed to be convex. If a preference relation is given by a 
continuous utility function, then this preference is convex if and only if the utility function is quasi concave. 
In this sense, the class of quasi concave utility functions is in some meaningful sense the largest class of 
functions representing convex preferences.

The assumptions and techniques used in this paper are essentially different from those developed for 
discrete systems in [4,15,18] where the main assumptions involve both the multi-valued mapping and the 
utility function. The main assumptions of this paper are imposed on the multi-valued mapping trying 
to keep (as much as possible) the utility function arbitrary. In this way we establish the class of multi-
valued mappings (called class A) for which the turnpike property is true for any quasi concave utility 
function.

The reminder of the article is organized as follows. In the next section we formulate the problem and 
provide the notations and assumptions used throughout the paper. Section 3 presents the main results of the 
paper demonstrated with examples. Some preliminary results are provided in Section 4. The main theorems 
are proved in Section 5.

2. Problem formulation and assumptions

Consider the system

ẋ(t) ∈ a(x(t)), a.e. t ≥ 0; (1)

where x is an element of the Euclidean space Rn. The multi-valued mapping a is defined on a convex closed 
set Da with non-empty interior, has compact images and is upper semi-continuous (u.s.c.) in the Hausdorff 
metric. The assumption that Da has a non-empty interior is not restrictive; otherwise one could consider 
system (1) in a subspace of Rn (the affine hull of Da) by reducing the dimensionality of the space where 
the corresponding multi-valued mapping has a non-empty interior.

We will use the notation a(A) = ∪x∈Aa(x) and, given a point x, we do not distinguish between a(x) and 
a({x}). Throughout the paper, “ · ”, “co” and “int” stand for the scalar product, convex hull and interior, 
respectively.

2.1. Solutions to (1)

An absolutely continuous function x = x(t), t ≥ 0, satisfying (1) is called a solution. We assume that 
system (1) has a bounded solution defined on an infinite horizon [0, ∞). This is not a restrictive assumption 
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