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We prove for some singular kernels K(x, y) that viscosity solutions of the integro-
differential equation

∫
Rn

[u(x + y) + u(x− y) − 2u(x)] K(x, y)dy = f(x)

locally belong to some Gevrey class if so does f . The fractional Laplacian equation 
is included in this framework as a special case.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Recently, a great attention has been devoted to equations driven by nonlocal operators of fractional type. 
From the physical point of view, these equations take into account long-range particle interactions with a 
power-law decay. When the decay at infinity is sufficiently weak, the long-range phenomena may prevail 
and the nonlocal effects persist even on large scales (see e.g. [7,19,21]).

The probabilistic counterpart of these fractional equations is that the underlying diffusion is driven by a 
stochastic process with power-law tail probability distribution (the so-called Pareto or Lévy distribution), 
see for instance [28,26]. Since long relocations are allowed by the process, the diffusion obtained is sometimes 
referred to with the name of anomalous (in contrast with the classical one coming from Poisson distribu-
tions). Physical realizations of these models occur in different fields, such as fluid dynamics (and especially 
quasi-geostrophic and water wave equations), dynamical systems, elasticity and micelles, see, among the 
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others [25,9,10,22]. Also, the scale invariance of the nonlocal probability distribution may combine with 
the intermittency and renormalization properties of other nonlinear dynamics and produce complex pat-
terns with fractional features. For instance, there are indications that the distribution of food on the ocean 
surface has scale invariant properties (see e.g. [27] and references therein) and it is possible that optimal 
searches of predators reflect these patterns in the effort of locating abundant food in sparse environments, 
also considering that power-law distribution of movements allows the individuals to visit more sites than 
the classical Brownian situation (see e.g. [2,14]).

The regularity theory of integro-differential equations has been extensively studied in continuous and 
smooth spaces, see e.g. [23,5,1,11]. The purpose of this paper is to deal with the regularity theory in a 
Gevrey framework. The proof combines a quantitative bootstrap argument developed in [1] and the classical 
iteration scheme of [18,17]. Here the bootstrap argument is more delicate than in the classical case due to 
the nonlocality of the operator, since the value of the function in a small ball is affected by the values of the 
function everywhere, not only in a slightly bigger ball; in particular the derivatives of the function cannot 
be controlled in the whole space and a suitable truncation argument is needed.

Before stating the main results of the paper, we recall the definition of Gevrey function. For a detailed 
treatment of the theory of Gevrey functions and their relation with analytic functions we refer to [16,20]. 
Let Ω ∈ R

n be an open set, we define for any fixed real number σ ≥ 1 the class Gσ(Ω) of Gevrey functions 
of order σ in Ω. This is the set of functions f ∈ C∞(Ω) such that for every compact subset Θ of Ω there 
exist positive constants V and Γ such that for all i ∈ N

∥∥Dif
∥∥

L∞(Θ) ≤ V Γi (i!)σ .

We remark that the spaces Gσ (Ω) form a nested family, in the sense that Gσ (Ω) ⊆ Gτ (Ω) whenever σ ≤ τ

and furthermore the inclusion is strict whenever the inequality is. Clearly the class G1 (Ω) coincides with 
Cω(Ω), that of analytical functions. It should be stressed that both inclusions

Cω(Ω) ⊂
⋂
σ>1

Gσ (Ω)
⋃
σ≥1

Gσ (Ω) ⊂ C∞(Ω)

are strict, see [20]. The notion of Gevrey class of functions is quite useful in applications. For instance, it 
possess a nice characterization in Fourier spaces. Moreover, cut-off functions are never analytic, but they 
may be chosen to belong to a Gevrey space. Roughly speaking, for a smooth function f the notion of Gevrey 
order measures “how much” the Taylor series of f diverges.

As in [1] we consider a quite general kernel K = K(x, y) : Rn × (Rn\ {0}) → (0,+∞) satisfying some 
structural assumptions. From now we assume that s ∈ (1/2, 1).

We suppose that K is close to the kernel of the fractional Laplacian in the sense that
⎧⎨
⎩

there exist a0, r0 and η ∈ (0, a0/4) such that∣∣∣∣ |y|n+2sK(x, y)
2 − 2s − a0

∣∣∣∣ ≤ η for all x ∈ B1, y ∈ Br0\ {0} .
(1.1)

Since we are interested in the Gevrey regularity, in order to ensure that our solutions are C∞ we assume 
that K ∈ C∞ (B1 × (Rn\ {0})) and moreover

⎧⎨
⎩

for all k ∈ N ∪ {0} there exist Hk > 0 such that∥∥Dμ
xD

θ
yK(·, y)

∥∥
L∞(B1)

≤ Hk

|y|n+2s+|θ| for all μ, θ ∈ N
n, |μ| + |θ| = k, y ∈ Br0\ {0} . (1.2)

Furthermore, since we need a quantitative asymptotic control on the tails of the derivatives of K, we assume 
that
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