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This paper concerns the Cauchy problem of the n-dimensional generalized incom-
pressible magneto-hydrodynamic (GMHD) equations with β ∈ ( 1

2 , 1]. By using the 
Fourier localization argument and the Littlewood–Paley theory, we get the global 
well-posedness of the GMHD equations with small initial data (u0, b0) belongs to 
the critical Fourier–Herz spaces Ḃ−(2β−1)

q with q ∈ [1, 2]. In addition, for 2 < q ≤ ∞, 
ill-posedness for the case β = 1 in Ḃ−1

q is also established.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following Cauchy problem of the n-dimensional generalized incompressible 
magneto-hydrodynamic (GMHD) equations in Rn × (0, +∞), n ≥ 3:

ut + (−Δ)βu + (u · ∇)u− (b · ∇)b + ∇P = 0, (x, t) ∈ Rn × (0,+∞), (1.1)

bt + (−Δ)βb + (u · ∇)b− (b · ∇)u = 0, (x, t) ∈ Rn × (0,+∞), (1.2)

div u = 0, div b = 0, (x, t) ∈ Rn × (0,+∞) (1.3)

with the initial conditions

u(x, 0) = u0(x), b(x, 0) = b0(x), x ∈ Rn, (1.4)
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where u = u(x, t) = (u1(x, t), . . . , un(x, t)), b = b(x, t) = (b1(x, t), . . . , bn(x, t)) and P = P (x, t) =
p(x, t) + |b|2

2 stand for the fluid velocity field, the magnetic field, and the total kinetic pressure, respec-
tively, and β ∈ (1

2 , 1]. The fractional Laplacian operator (−Δ)β with respect to space variable x is a 
Riesz potential operator defined as usual through Fourier transform as F((−Δ)βf)(ξ) = |ξ|2βFf(ξ), where 
Ff(ξ) = f̂(ξ) = 1√

2πn

∫
Rn e−ix·ξf(x)dx. The initial velocity field u0 and the initial magnetic field b0 satisfy-

ing div u0 = 0, div b0 = 0, respectively. For simplicity, we set the Reynolds number, the magnetic Reynolds 
number, and the corresponding coefficients to be equal to one.

The GMHD system (1.1)–(1.4), which describes the macroscopic behavior of the electrically conducting 
incompressible fluids in a magnetic field, is a generalization of the usual incompressible MHD system by 
replacing the Laplacian operator −Δ in the MHD system with a general fractional Laplacian operator (−Δ)β
(see Wu [22,23,25]). When β = 1, the system (1.1)–(1.4) becomes the usual MHD system, which has drawn 
much attention during the past twenty more years (cf. [4,6,11,19,20] and the references cited therein). In 
particular, when β = 1 and b ≡ 0, the system (1.1)–(1.4) becomes the well-known Navier–Stokes equations, 
for which there have been a lot of works concerning well-posedness of the initial value problem in various 
classical function spaces. For instance, Fujita and Kato [9] proved both the global well-posedness for small 
initial data and the local well-posedness for large initial data in the Sobolev space Hs(Rn) with s ≥ n/2 −1. 
Kato [13] established similar results in the Lebesgue spaces Ln(Rn). Giga and Miyakawa [10] considered 
the Cauchy problem in Lp(Ω), where Ω is a bounded domain and p ≥ n. Cannone [3] obtained the global 
solutions in the case of n = 3 for initial data u0 ∈ B

−1+3/q
q,∞ (R3) (3 < q ≤ 6). Koch and Tataru [14] studied 

local solutions for initial data u0 ∈ vmo−1 and global solutions for small initial data u0 ∈ BMO−1. Very 
recently, Cannone and Wu [5] studied the global well-posedness in the critical Fourier–Herz space Ḃ−1

q with 
1 ≤ q ≤ 2. In papers [2,27], the ill-posedness of the Navier–Stokes equations is observed.

For the GMHD system (1.1)–(1.4), Wu in [22] established the global-in-time weak solution for any given 
divergence free initial value (u0, b0) ∈ L2(Rn). Moreover, when β ≥ 1

2 + n
4 , Wu proved that the weak 

solution is in fact the classical solution. Yuan [28] obtained the local-in-time existence and uniqueness of 
smooth solution for any sufficient smooth initial data (u0, b0). Liu, Zhao and Cui [17] obtained the global 
existence and stability of solutions for system (1.1)–(1.4) with small initial data (u0, b0) belonging to the 
pseudomeasure space PMa (with a ≥ n − (2β − 1) a given parameter), where PMa is defined by

PM a :=
{
f ∈ S ′ : f̂ ∈ L1

loc
(
Rn

)
, ‖f‖PMa := ess sup

ξ∈Rn

|ξ|a
∣∣f̂(ξ)

∣∣ < ∞
}
.

We also refer to [18,23–25,29,30] on other related topics on system (1.1)–(1.4).
Recall that system (1.1)–(1.4) is invariant under a particular change of space and time scaling. More pre-

cisely, if (u, b, P ) solves system (1.1)–(1.3) with initial data (u0, b0), then the re-scaled functions (uλ, bλ, Pλ)
for all λ > 0, where

uλ(x, t) = λ2β−1u
(
λx, λ2βt

)
, bλ(x, t) = λ2β−1b

(
λx, λ2βt

)
, Pλ(x, t) = λ4β−2P

(
λx, λ2βt

)
,

also solves the system (1.1)–(1.3) with initial data (u0λ, b0λ) := (λ2β−1u0(λx), λ2β−1b0(λx)). This scaling 
invariance property is particularly significant for (1.1)–(1.4) and naturally leads to the definition of critical 
space for system (1.1)–(1.4). A function space is critical for (1.1)–(1.4) if it is invariant under the scaling

fλ(x) := λ2β−1f(λx). (1.5)

It is easy to verify that the spaces Ḣ
n
2 −(2β−1)(Rn), L

n
2β−1 (Rn) and Ḃ

−(2β−1)+n
p

p,q (Rn) (n < p ≤ ∞, 1 ≤
q ≤ ∞) are critical spaces for (1.1)–(1.4). We notice that the Fourier–Herz space Ḃ−(2β−1)

q , which will be 
discussed in this paper, is also a critical space (see Remark 2.2 below).
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