

Subspaces of codimension two with large projection constants

Alberto Castejón ${ }^{\text {a,* }}$, Grzegorz Lewicki ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Mathematics I, University of Vigo, Vigo, Spain
b Institute of Mathematics, Jagiellonian University, Eojasiewicza 6, 30-348 Krakow, Poland

A R T I C L E I N F O

Article history:

Received 17 February 2014
Available online 26 June 2014
Submitted by J. Bastero
This paper is dedicated to Eusebio Corbacho Rosas, advisor of the first author, on the occasion of his 65th birthday

Keywords:

Absolute projection constant
Minimal projection
Symmetric matrices
Eigenvalues
Eigenvectors

A B S T R A C T

Let V be an n-dimensional real Banach space and let $\lambda(V)$ denote its absolute projection constant. For any $N \in \mathbb{N}, N \geq n$ define

$$
\lambda_{n}^{N}=\sup \left\{\lambda(V): \operatorname{dim}(V)=n, V \subset l_{\infty}^{(N)}\right\} .
$$

The aim of this paper is to determine minimal projections with respect to l_{1}-norm as well as with respect to l_{∞}-norm for subspaces given by solutions of certain extremal problems. As an application we show that for any $n, N \in \mathbb{N}, N \geq n$ there exists an n-dimensional subspace $V_{n} \subset l_{1}^{(N)}$ such that

$$
\lambda_{n}^{N}=\lambda\left(V_{n}, l_{1}^{(N)}\right) .
$$

Also we calculate relative and absolute projection constants of some subspaces of codimension two in $l_{1}^{(N)}$ and $l_{\infty}^{(N)}$ for $N \geq 3$ being odd natural number. Moreover, we show that for any odd natural number $n \geq 3$,

$$
\lambda_{n}^{n+1}<\max _{x \in[0,1]} f_{n}(x) \leq \lambda_{n}^{n+2}
$$

where

$$
f_{n}(x)=\frac{2 n}{n+1}(1-x)+\frac{1}{2}\left(x-2 \frac{1-x}{n+1}+\sqrt{\left(2 \frac{1-x}{n+1}-x\right)^{2}+4(1-x) x}\right) .
$$

Also for any $n \in \mathbb{N} x_{n} \in[0,1]$ satisfying

$$
f_{n}\left(x_{n}\right)=\max _{x \in[0,1]} f_{n}(x)
$$

will be calculated.

[^0]http://dx.doi.org/10.1016/j.jmaa.2014.06.067
0022-247X/© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a real Banach space and let $V \subset X$ be a finite-dimensional subspace. A linear, continuous mapping $P: X \rightarrow V$ is called a projection if $\left.P\right|_{V}=\left.i d\right|_{V}$. Denote by $\mathcal{P}(X, V)$ the set of all projections from X onto V. Set

$$
\lambda(V, X)=\inf \{\|P\|: P \in \mathcal{P}(X, V)\}
$$

and

$$
\lambda(V)=\sup \{\lambda(V, X): V \subset X\} .
$$

A projection $P_{o} \in \mathcal{P}(X, V)$ is called minimal if

$$
\left\|P_{o}\right\|=\lambda(V, X) .
$$

The constant $\lambda(V, X)$ is called the relative projection constant and $\lambda(V)$ the absolute projection constant. Minimal projections in the context of functional analysis and approximation theory have been extensively studied by many authors (see e.g., [1-16,18-31,33-35]). Mainly the problems of existence of minimal projections, uniqueness of minimal projections, finding concrete formulas for minimal projections and estimates of the constant $\lambda(V, X)$ were considered.

General bounds for absolute projection constants were studied by many authors (see e.g. [4-7,18-21,32]). It is well-known (see e.g. [36]) that if V is a finite-dimensional space then

$$
\lambda(V)=\lambda\left(I(V), l_{\infty}\right)
$$

where $I(V)$ denotes any isometric copy of V in l_{∞}. Denote for any $n \in \mathbb{N}$

$$
\lambda_{n}=\sup \{\lambda(V): \operatorname{dim}(V)=n\}
$$

and for any $N \in \mathbb{N}, N \geq n$

$$
\lambda_{n}^{N}=\sup \left\{\lambda(V): V \subset l_{\infty}^{(N)}\right\} .
$$

By the Kadec-Snobar Theorem (see [17]) $\lambda(V) \leq \sqrt{n}$ for any $n \in \mathbb{N}$. However, determination of the constant λ_{n} seems to be difficult.

The aim of this paper is to determine minimal projections with respect to l_{1}-norm as well as for l_{∞}-norm for subspaces given by solutions of certain extremal problems. As an application we show that for any $n, N \in \mathbb{N}, N \geq n$ there exists an n-dimensional subspace $V_{n} \subset l_{1}^{(N)}$ such that

$$
\lambda_{n}^{N}=\lambda\left(V_{n}, l_{1}^{(N)}\right)
$$

Also we show that for any odd natural number $n \geq 3$,

$$
\lambda_{n}^{n+1}<\max _{x \in[0,1]} f_{n}(x) \leq \lambda_{n}^{n+2}
$$

where

$$
f_{n}(x)=\frac{2 n}{n+1}(1-x)+\frac{1}{2}\left(x-2 \frac{1-x}{n+1}+\sqrt{\left(2 \frac{1-x}{n+1}-x\right)^{2}+4(1-x) x}\right) .
$$

https://daneshyari.com/en/article/6417850

Download Persian Version:
https://daneshyari.com/article/6417850

Daneshyari.com

[^0]: * Corresponding author.

