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Let V be an n-dimensional real Banach space and let λ(V ) denote its absolute 
projection constant. For any N ∈ N, N ≥ n define

λN
n = sup

{
λ(V ): dim(V ) = n, V ⊂ l(N)

∞
}
.

The aim of this paper is to determine minimal projections with respect to l1-norm as 
well as with respect to l∞-norm for subspaces given by solutions of certain extremal 
problems. As an application we show that for any n, N ∈ N, N ≥ n there exists an 
n-dimensional subspace Vn ⊂ l

(N)
1 such that

λN
n = λ

(
Vn, l

(N)
1

)
.

Also we calculate relative and absolute projection constants of some subspaces of 
codimension two in l(N)

1 and l(N)
∞ for N ≥ 3 being odd natural number. Moreover, 

we show that for any odd natural number n ≥ 3,

λn+1
n < max

x∈[0,1]
fn(x) ≤ λn+2

n ,

where

fn(x) =
2n

n + 1
(1 − x) +

1
2

(
x− 2

1 − x

n + 1
+

√(
2
1 − x

n + 1
− x

)2
+ 4(1 − x)x

)
.

Also for any n ∈ N xn ∈ [0, 1] satisfying

fn(xn) = max
x∈[0,1]

fn(x)

will be calculated.
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1. Introduction

Let X be a real Banach space and let V ⊂ X be a finite-dimensional subspace. A linear, continuous 
mapping P : X → V is called a projection if P |V = id|V . Denote by P(X, V ) the set of all projections from 
X onto V . Set

λ(V,X) = inf
{
‖P‖: P ∈ P(X,V )

}
and

λ(V ) = sup
{
λ(V,X): V ⊂ X

}
.

A projection Po ∈ P(X, V ) is called minimal if

‖Po‖ = λ(V,X).

The constant λ(V, X) is called the relative projection constant and λ(V ) the absolute projection constant.
Minimal projections in the context of functional analysis and approximation theory have been extensively 
studied by many authors (see e.g., [1–16,18–31,33–35]). Mainly the problems of existence of minimal projec-
tions, uniqueness of minimal projections, finding concrete formulas for minimal projections and estimates 
of the constant λ(V, X) were considered.

General bounds for absolute projection constants were studied by many authors (see e.g. [4–7,18–21,32]). 
It is well-known (see e.g. [36]) that if V is a finite-dimensional space then

λ(V ) = λ
(
I(V ), l∞

)
,

where I(V ) denotes any isometric copy of V in l∞. Denote for any n ∈ N

λn = sup
{
λ(V ): dim(V ) = n

}
and for any N ∈ N, N ≥ n

λN
n = sup

{
λ(V ): V ⊂ l(N)

∞
}
.

By the Kadec–Snobar Theorem (see [17]) λ(V ) ≤ √
n for any n ∈ N. However, determination of the constant 

λn seems to be difficult.
The aim of this paper is to determine minimal projections with respect to l1-norm as well as for l∞-norm 

for subspaces given by solutions of certain extremal problems. As an application we show that for any 
n, N ∈ N, N ≥ n there exists an n-dimensional subspace Vn ⊂ l

(N)
1 such that

λN
n = λ

(
Vn, l

(N)
1

)
.

Also we show that for any odd natural number n ≥ 3,

λn+1
n < max

x∈[0,1]
fn(x) ≤ λn+2

n ,

where

fn(x) = 2n
n + 1(1 − x) + 1

2

(
x− 21 − x

n + 1 +

√(
21 − x

n + 1 − x

)2

+ 4(1 − x)x
)
.
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