The connectedness of some two-dimensional self-affine sets

Yong Ma ${ }^{\text {a }}$, Xin-Han Dong ${ }^{\text {a,* }}$, Qi-Rong Deng ${ }^{\text {b }}$
a Department of Mathematics, Hunan Normal University, ChangSha, 410081, PR China
b Department of Mathematics, Fujian Normal University, Fuzhou, 350007, PR China

A R T I C L E I N F O

Article history:

Received 23 September 2013
Available online 25 June 2014
Submitted by P. Yao

Keywords:

Digit sets
Self-affine sets
Connectedness

Abstract

In the paper, we mainly discuss the connectedness of two kinds of self-affine sets. One is generated by matrix $A=\left(\begin{array}{cc}p & 0 \\ -a & q\end{array}\right)$ and digit set $\mathcal{D}=\left\{(i s, j t)^{T}\right.$: $i=0,1, \ldots,|q|-1, j=0,1, \ldots,|p|-1\}$, where $s, t \neq 0$ and $p, q \in \mathbb{Z}$ with $3 \leq|p|+1<|q|<2|p|-1$. The other is generated by matrix $A=\left(\begin{array}{cc}p & 0 \\ -a & q\end{array}\right)$ and digit set $\mathcal{D}=\left\{(i s,(d i+j) t)^{T}: i=0,1, \ldots,|p|-1, j=0,1, \ldots,|q|-1\right\}$, where $s, t \neq 0$, and $p, q, d \in \mathbb{Z}$ with $|p|,|q| \geq 2$. The sufficient or necessary conditions for their connectedness are revealed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an $n \times n$ expanding matrix (all its eigenvalues have moduli >1). Let $\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \subset \mathbb{R}^{n}$ be a finite set of m distinct vectors, called an m-digit set. Then linear maps

$$
\begin{equation*}
S_{i}(x)=A^{-1}\left(x+d_{i}\right), \quad 1 \leq i \leq m \tag{1.1}
\end{equation*}
$$

are all contractive with respect to a suitable metric on \mathbb{R}^{n}, and it is well known [10] that there exists an unique non-empty compact set T satisfying the set-valued functional equation

$$
\begin{equation*}
T=\bigcup_{i=1}^{m} S_{i}(T) . \tag{1.2}
\end{equation*}
$$

Then T can be explicitly given by

$$
\begin{equation*}
T:=T(A, \mathcal{D}):=\left\{\sum_{i=1}^{\infty} A^{-i} e_{i}: e_{i} \in \mathcal{D}\right\} . \tag{1.3}
\end{equation*}
$$

[^0]T is called a self-affine set generated by the iterated function system (IFS) $\left\{S_{i}\right\}_{i=1}^{m}$. Moreover, it is called a self-affine tile if it has nonempty interior and $m=|\operatorname{det} A|$, where $\operatorname{det} A$ is the determinant of A. Self-affine tiles have rich analytic and number theoretic properties, and have attracted a lot of attention in fractal geometry, wavelet theory and number theory. There are a lot of literature on this topic; see $[1,2,13-16]$ and references therein. Rectangles and regular hexagons are trivial examples of tiles, and the twin dragon is a non-trivial example of tiles.

Among all the properties of $T(A, \mathcal{D})$, the geometric and topological properties are the most important and fundamental, and they therefore are studied most extensively. One of the very interesting aspects is the connectedness of $T(A, \mathcal{D})$. It was asked by [7] that when A is an expansive integer matrix, whether or not there exists a digit set \mathcal{D} such that $\# \mathcal{D}=|\operatorname{det} A|$ and $T(A, \mathcal{D})$ is a connected tile. Various results can be found in $[2-5,7,8]$.

It is almost trivial to see that in \mathbb{R}, for $A=q$ an integer larger than or equal to $2, T(A, \mathcal{D})$ is a connected self-affine tile if and only if $\mathcal{D}=\{\alpha, \alpha+\beta, \cdots, \alpha+(q-1) \beta\}$ for some α and $\beta \neq 0$. $[1,9,11,12]$ considered the connectedness of $T(A, \mathcal{D})$ where \mathcal{D} is a consecutive collinear digit set. [17] explored the case in which \mathcal{D} is a non-consecutive collinear digit set.

Not attempting to study the tiles generated from more general digit sets, [6] considered another simple case of non-collinear digit sets: the matrix A is a 2×2 lower triangular matrix and the digit set is arranged in the form of rectangular, i.e.,

$$
A=\left[\begin{array}{cc}
p & 0 \tag{1.4}\\
-a & q
\end{array}\right], \quad \mathcal{D}=\left\{\left[\begin{array}{c}
i \\
j
\end{array}\right]: 0 \leq i \leq|p|-1,0 \leq j \leq|q|-1\right\}
$$

where a is a real number. A necessary and sufficient condition of the connectedness of $T(A, \mathcal{D})$ is given there. It is interesting to find that the resulting tiles can be disconnected even for very simple matrices and digit sets, e.g., the case $p=q=2, a>2$. It is observed that the digit sets in [6] have exactly $|p|$ columns corresponding to the left-up element of A. A natural problem is, what will happen if the number of columns is not $|p|$? Motivated by this, we consider the following case: \mathcal{D} has $|q|$ columns and $|p|$ rows.

Throughout the paper, we write

$$
E_{n}=\{0,1, \cdots, n-1\}, \quad n \geq 1 .
$$

For the disconnectedness, we have
Theorem 1.1. Let $p, q \in \mathbb{Z}$ with $|p|>|q| \geq 2$, and let

$$
A=\left(\begin{array}{cc}
p & 0 \\
-a & q
\end{array}\right), \quad \mathcal{D}=\left\{(i s, j t)^{T}: i \in E_{|q|}, j \in E_{|p|}\right\}
$$

where $s, t \neq 0$ and a are real numbers. Then $T(A, \mathcal{D})$ is disconnected.
For the connectedness, we have
Theorem 1.2. Let $p, q \in \mathbb{Z}$ with $3 \leq|p|+1<|q|<2|p|-1$, and let

$$
A=\left(\begin{array}{cc}
p & 0 \\
-a & q
\end{array}\right), \quad \mathcal{D}=\left\{(i s, j t)^{T}: i \in E_{|q|}, j \in E_{|p|}\right\}
$$

where $s, t \neq 0$ and a are real numbers. If $q^{2}-|q p| \leq\left|\frac{a s}{t}\right| \leq \frac{q^{2}(|p|-1)}{|q|-2}$, then $T(A, \mathcal{D})$ is connected.

https://daneshyari.com/en/article/6417880

Download Persian Version:

https://daneshyari.com/article/6417880

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mymathf@gmail.com (Y. Ma), xhdonghnsd@163.com (X.-H. Dong), qrdeng@fjnu.edu.cn (Q.-R. Deng).
 http://dx.doi.org/10.1016/j.jmaa.2014.06.054
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

