

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The connectedness of some two-dimensional self-affine sets

Yong Ma^a, Xin-Han Dong^{a,*}, Qi-Rong Deng^b

- ^a Department of Mathematics, Hunan Normal University, ChangSha, 410081, PR China
- Department of Mathematics, Fujian Normal University, Fuzhou, 350007, PR China

ARTICLE INFO

Article history: Received 23 September 2013 Available online 25 June 2014 Submitted by P. Yao

Keywords: Digit sets Self-affine sets Connectedness

ABSTRACT

In the paper, we mainly discuss the connectedness of two kinds of self-affine sets. One is generated by matrix $A = \binom{p-0}{-a-q}$ and digit set $\mathcal{D} = \{(is,jt)^T: i=0,1,\ldots,|q|-1,j=0,1,\ldots,|p|-1\}$, where $s,t\neq 0$ and $p,q\in\mathbb{Z}$ with $3\leq |p|+1<|q|<2|p|-1$. The other is generated by matrix $A = \binom{p-0}{-a-q}$ and digit set $\mathcal{D} = \{(is,(di+j)t)^T: i=0,1,\ldots,|p|-1,j=0,1,\ldots,|q|-1\}$, where $s,t\neq 0$, and $p,q,d\in\mathbb{Z}$ with $|p|,|q|\geq 2$. The sufficient or necessary conditions for their connectedness are revealed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an $n \times n$ expanding matrix (all its eigenvalues have moduli > 1). Let $\mathcal{D} = \{d_1, d_2, \dots, d_m\} \subset \mathbb{R}^n$ be a finite set of m distinct vectors, called an m-digit set. Then linear maps

$$S_i(x) = A^{-1}(x + d_i), \quad 1 \le i \le m,$$
 (1.1)

are all contractive with respect to a suitable metric on \mathbb{R}^n , and it is well known [10] that there exists an unique non-empty compact set T satisfying the set-valued functional equation

$$T = \bigcup_{i=1}^{m} S_i(T). \tag{1.2}$$

Then T can be explicitly given by

$$T := T(A, \mathcal{D}) := \left\{ \sum_{i=1}^{\infty} A^{-i} e_i : e_i \in \mathcal{D} \right\}. \tag{1.3}$$

 $\label{lem:email$

^{*} Corresponding author.

T is called a self-affine set generated by the iterated function system (IFS) $\{S_i\}_{i=1}^m$. Moreover, it is called a self-affine tile if it has nonempty interior and $m = |\det A|$, where $\det A$ is the determinant of A. Self-affine tiles have rich analytic and number theoretic properties, and have attracted a lot of attention in fractal geometry, wavelet theory and number theory. There are a lot of literature on this topic; see [1,2,13-16] and references therein. Rectangles and regular hexagons are trivial examples of tiles, and the twin dragon is a non-trivial example of tiles.

Among all the properties of $T(A, \mathcal{D})$, the geometric and topological properties are the most important and fundamental, and they therefore are studied most extensively. One of the very interesting aspects is the connectedness of $T(A, \mathcal{D})$. It was asked by [7] that when A is an expansive integer matrix, whether or not there exists a digit set \mathcal{D} such that $\#\mathcal{D} = |\det A|$ and $T(A, \mathcal{D})$ is a connected tile. Various results can be found in [2-5,7,8].

It is almost trivial to see that in \mathbb{R} , for A = q an integer larger than or equal to 2, $T(A, \mathcal{D})$ is a connected self-affine tile if and only if $\mathcal{D} = \{\alpha, \alpha + \beta, \dots, \alpha + (q-1)\beta\}$ for some α and $\beta \neq 0$. [1,9,11,12] considered the connectedness of $T(A, \mathcal{D})$ where \mathcal{D} is a consecutive collinear digit set. [17] explored the case in which \mathcal{D} is a non-consecutive collinear digit set.

Not attempting to study the tiles generated from more general digit sets, [6] considered another simple case of non-collinear digit sets: the matrix A is a 2×2 lower triangular matrix and the digit set is arranged in the form of rectangular, i.e.,

$$A = \begin{bmatrix} p & 0 \\ -a & q \end{bmatrix}, \qquad \mathcal{D} = \left\{ \begin{bmatrix} i \\ j \end{bmatrix} : 0 \le i \le |p| - 1, \ 0 \le j \le |q| - 1 \right\},\tag{1.4}$$

where a is a real number. A necessary and sufficient condition of the connectedness of $T(A, \mathcal{D})$ is given there. It is interesting to find that the resulting tiles can be disconnected even for very simple matrices and digit sets, e.g., the case p=q=2, a>2. It is observed that the digit sets in [6] have exactly |p| columns corresponding to the left-up element of A. A natural problem is, what will happen if the number of columns is not |p|? Motivated by this, we consider the following case: \mathcal{D} has |q| columns and |p| rows.

Throughout the paper, we write

$$E_n = \{0, 1, \dots, n-1\}, \quad n \ge 1.$$

For the disconnectedness, we have

Theorem 1.1. Let $p, q \in \mathbb{Z}$ with $|p| > |q| \ge 2$, and let

$$A = \begin{pmatrix} p & 0 \\ -a & q \end{pmatrix}, \qquad \mathcal{D} = \left\{ (is, jt)^T : i \in E_{|q|}, \ j \in E_{|p|} \right\}$$

where $s, t \neq 0$ and a are real numbers. Then $T(A, \mathcal{D})$ is disconnected.

For the connectedness, we have

Theorem 1.2. Let $p, q \in \mathbb{Z}$ with $3 \le |p| + 1 < |q| < 2|p| - 1$, and let

$$A = \begin{pmatrix} p & 0 \\ -a & q \end{pmatrix}, \qquad \mathcal{D} = \left\{ (is, jt)^T : i \in E_{|q|}, \ j \in E_{|p|} \right\}$$

where $s, t \neq 0$ and a are real numbers. If $q^2 - |qp| \leq \left| \frac{as}{t} \right| \leq \frac{q^2(|p|-1)}{|q|-2}$, then $T(A, \mathcal{D})$ is connected.

Download English Version:

https://daneshyari.com/en/article/6417880

Download Persian Version:

https://daneshyari.com/article/6417880

<u>Daneshyari.com</u>