Operators which are the difference of two projections

Esteban Andruchow ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina
${ }^{\text {b }}$ Instituto Argentino de Matemática, Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina

A R T I C L E I N F O

Article history:

Received 12 March 2014
Available online 17 June 2014
Submitted by L. Fialkow

Keywords:

Projections
Pairs of projections
Geodesics

ABSTRACT

We study the set \mathcal{D} of differences

$$
\mathcal{D}=\{A=P-Q: P, Q \in \mathcal{P}\}
$$

where \mathcal{P} denotes the set of orthogonal projections in \mathcal{H}. We describe models and factorizations for elements in \mathcal{D}, which are related to the geometry of \mathcal{P}. The study of \mathcal{D} throws new light on the geodesic structure of \mathcal{P} (we show that two projections in generic position are joined by a unique minimal geodesic). The topology of \mathcal{D} is examined, particularly its connected components are studied. Also we study the subsets $\mathcal{D}_{c} \subset \mathcal{D}_{F}$, where \mathcal{D}_{c} are the compact elements in \mathcal{D}, and \mathcal{D}_{F} are the differences $A=P-Q$ such that the pair (P, Q) is a Fredholm pair $((P, Q)$ is a Fredholm pair if $\left.Q P\right|_{R(P)}: R(P) \rightarrow R(Q)$ is a Fredholm operator).
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study bounded linear operators in a Hilbert space \mathcal{H} which are the difference of two orthogonal projections:

$$
A=P-Q
$$

Such operators A are apparently selfadjoint, and they are contractions. Indeed, by the Krein-KrasnoselskiMilman formula (see for instance [1]),

$$
\|P-Q\|=\max \{\|P(1-Q)\|,\|Q(1-P)\|\}
$$

and clearly $\|P(1-Q)\| \leq 1$ and $\|Q(1-P)\| \leq 1$. Also, straightforward computations show that

[^0]$$
N(A)=(N(P) \cap N(Q)) \oplus(R(P) \cap R(Q)), \quad N(A-1)=R(P) \cap N(Q)
$$
and
$$
N(A+1)=N(P) \cap R(Q)
$$

Note that $N(A), N(A-1), N(A+1)$, and the orthogonal complement \mathcal{H}_{0} of the sum of these, reduce P, Q and A. These subspaces depend on A and not on the projections P and Q. The space \mathcal{H}_{0} is usually called the generic part of P and Q. We shall call it, we guess more appropriately, the generic part of $A=P-Q$. It is the generic part that is of interest, as A acts trivially on the non-generic part. Namely, denote by $A_{0}=\left.A\right|_{\mathcal{H}_{0}}$ the generic part of A, acting in \mathcal{H}_{0}. Apparently, in the decomposition

$$
\mathcal{H}=N(A) \oplus N(A-1) \oplus N(A+1) \oplus \mathcal{H}_{0}
$$

A is given by

$$
A=0 \oplus 1 \oplus-1 \oplus A_{0} .
$$

There is an extensive bibliography on pairs of projections. There is also a very good survey paper on the subject by A. Böttcher and I.M. Spitkovsky [5], and we refer the reader to the references therein. We shall base our remarks on two classic papers on the subject, by P. Halmos [9] and C. Davis [7]. The first of these papers provides a simple 2×2 matrix model for a given pair of projections P, Q, which we describe below. One of the many consequences is that the generic parts P_{0} and Q_{0} acting in \mathcal{H}_{0} are unitarily equivalent, with an explicitly constructed unitary operator implementing this equivalence. The second paper characterizes the operators A which are a difference of projections: their generic parts are selfadjoint contractions A_{0} which anticommute with a symmetry V (a symmetry is a selfadjoint unitary operator: $V^{*}=V=V^{-1}$).

We regard the present paper as an incomplete comment on these two papers. Given our interest in the differential geometry of the space \mathcal{P} of projections in \mathcal{H} [6], we relate the results by Halmos and Davis to the question of the existence and uniqueness of geodesics in \mathcal{P}.

The contents of the paper are the following. In Section 2 we recall the results by Halmos [9] and Davis [7], as well as certain facts from the geometry of \mathcal{P} [6]. Section 3 contains consequences of Davis' characterization of differences of projections A, particularly, that symmetries V which anticommute with A_{0} parametrize all pairs P, Q such that $A=P-Q$. In Section 4 we show how each geodesic of \mathcal{P} joining P and Q provides a factorization $A=e^{i Z} \sigma$, where $A, Z=Z^{*}$ and $\sigma=\sigma^{*}$ anticommute (in contrast to the polar decomposition $A=\operatorname{sgn}(A)|A|$, where all data commute). In a previous work [3], it was shown that the projections P_{0} and Q_{0} in generic position can be joined by a (minimal) geodesic of \mathcal{P}. Using the ideas here we show that such geodesic is unique. In Section 5 we obtain descriptions for operators $A=P-Q$ and anticommuting symmetries V, decomposing \mathcal{H} in cyclic subspaces, as in the classic spectral theorem. In Section 6 we examine the topology of the space \mathcal{D} of differences of projections. We study connected components and characterize the interior set of \mathcal{D} : it consists of operators A such that A_{0} is non-trivial. In Section 7, using results from [4] (also [2]), we study operators $A=P-Q$ such that (P, Q) is a Fredholm pair. From the results obtained in [4] it is apparent that the property of being a Fredholm pair depends on the difference A and not on the particular pair. Therefore, an index for such differences (hereafter referred to as Fredholm differences) is defined, which coincides with $\operatorname{dim}(N(A-1))-\operatorname{dim}(N(A+1))$. This allows us to characterize the connected components of the sets of the Fredholm differences and compact differences, as a consequence.

The main results of the paper are in Theorem 4.2 (factorization of elements in \mathcal{D}), Theorem 4.3 and Corollary 4.4 (uniqueness of geodesics joining projections in generic position), Theorem 5.5 (multiplication

https://daneshyari.com/en/article/6417885

Download Persian Version:

https://daneshyari.com/article/6417885

Daneshyari.com

[^0]: E-mail address: eandruch@ungs.edu.ar.
 http://dx.doi.org/10.1016/j.jmaa.2014.06.022
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

