Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Operators which are the difference of two projections

Esteban Andruchow^{a,b}

 ^a Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina
^b Instituto Argentino de Matemática, Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina

ARTICLE INFO

Article history: Received 12 March 2014 Available online 17 June 2014 Submitted by L. Fialkow

Keywords: Projections Pairs of projections Geodesics ABSTRACT

We study the set \mathcal{D} of differences

$$\mathcal{D} = \{ A = P - Q : P, Q \in \mathcal{P} \},\$$

where \mathcal{P} denotes the set of orthogonal projections in \mathcal{H} . We describe models and factorizations for elements in \mathcal{D} , which are related to the geometry of \mathcal{P} . The study of \mathcal{D} throws new light on the geodesic structure of \mathcal{P} (we show that two projections in generic position are joined by a unique minimal geodesic). The topology of \mathcal{D} is examined, particularly its connected components are studied. Also we study the subsets $\mathcal{D}_c \subset \mathcal{D}_F$, where \mathcal{D}_c are the compact elements in \mathcal{D} , and \mathcal{D}_F are the differences A = P - Q such that the pair (P, Q) is a Fredholm pair ((P, Q) is a Fredholm pair if $QP|_{R(P)} : R(P) \to R(Q)$ is a Fredholm operator).

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study bounded linear operators in a Hilbert space \mathcal{H} which are the difference of two orthogonal projections:

$$A = P - Q.$$

Such operators A are apparently selfadjoint, and they are contractions. Indeed, by the Krein–Krasnoselski– Milman formula (see for instance [1]),

$$||P - Q|| = \max\{||P(1 - Q)||, ||Q(1 - P)||\},\$$

and clearly $||P(1-Q)|| \leq 1$ and $||Q(1-P)|| \leq 1$. Also, straightforward computations show that

http://dx.doi.org/10.1016/j.jmaa.2014.06.022 $0022\text{-}247\mathrm{X}/\odot$ 2014 Elsevier Inc. All rights reserved.

E-mail address: eandruch@ungs.edu.ar.

$$N(A) = (N(P) \cap N(Q)) \oplus (R(P) \cap R(Q)), \qquad N(A-1) = R(P) \cap N(Q)$$

and

$$N(A+1) = N(P) \cap R(Q).$$

Note that N(A), N(A-1), N(A+1), and the orthogonal complement \mathcal{H}_0 of the sum of these, reduce P, Qand A. These subspaces depend on A and not on the projections P and Q. The space \mathcal{H}_0 is usually called the generic part of P and Q. We shall call it, we guess more appropriately, the generic part of A = P - Q. It is the generic part that is of interest, as A acts trivially on the non-generic part. Namely, denote by $A_0 = A|_{\mathcal{H}_0}$ the generic part of A, acting in \mathcal{H}_0 . Apparently, in the decomposition

$$\mathcal{H} = N(A) \oplus N(A-1) \oplus N(A+1) \oplus \mathcal{H}_0$$

A is given by

$$A = 0 \oplus 1 \oplus -1 \oplus A_0.$$

There is an extensive bibliography on pairs of projections. There is also a very good survey paper on the subject by A. Böttcher and I.M. Spitkovsky [5], and we refer the reader to the references therein. We shall base our remarks on two classic papers on the subject, by P. Halmos [9] and C. Davis [7]. The first of these papers provides a simple 2×2 matrix model for a given pair of projections P, Q, which we describe below. One of the many consequences is that the generic parts P_0 and Q_0 acting in \mathcal{H}_0 are unitarily equivalent, with an explicitly constructed unitary operator implementing this equivalence. The second paper characterizes the operators A which are a difference of projections: their generic parts are selfadjoint contractions A_0 which anticommute with a symmetry V (a symmetry is a selfadjoint unitary operator: $V^* = V = V^{-1}$).

We regard the present paper as an incomplete comment on these two papers. Given our interest in the differential geometry of the space \mathcal{P} of projections in \mathcal{H} [6], we relate the results by Halmos and Davis to the question of the existence and uniqueness of geodesics in \mathcal{P} .

The contents of the paper are the following. In Section 2 we recall the results by Halmos [9] and Davis [7], as well as certain facts from the geometry of \mathcal{P} [6]. Section 3 contains consequences of Davis' characterization of differences of projections A, particularly, that symmetries V which anticommute with A_0 parametrize all pairs P, Q such that A = P - Q. In Section 4 we show how each geodesic of \mathcal{P} joining P and Q provides a factorization $A = e^{iZ}\sigma$, where $A, Z = Z^*$ and $\sigma = \sigma^*$ anticommute (in contrast to the polar decomposition $A = \operatorname{sgn}(A)|A|$, where all data commute). In a previous work [3], it was shown that the projections P_0 and Q_0 in generic position can be joined by a (minimal) geodesic of \mathcal{P} . Using the ideas here we show that such geodesic is unique. In Section 5 we obtain descriptions for operators A = P - Qand anticommuting symmetries V, decomposing \mathcal{H} in cyclic subspaces, as in the classic spectral theorem. In Section 6 we examine the topology of the space \mathcal{D} of differences of projections. We study connected components and characterize the interior set of \mathcal{D} : it consists of operators A such that A_0 is non-trivial. In Section 7, using results from [4] (also [2]), we study operators A = P - Q such that (P,Q) is a Fredholm pair. From the results obtained in [4] it is apparent that the property of being a Fredholm pair depends on the difference A and not on the particular pair. Therefore, an index for such differences (hereafter referred to as Fredholm differences) is defined, which coincides with $\dim(N(A-1)) - \dim(N(A+1))$. This allows us to characterize the connected components of the sets of the Fredholm differences and compact differences, as a consequence.

The main results of the paper are in Theorem 4.2 (factorization of elements in \mathcal{D}), Theorem 4.3 and Corollary 4.4 (uniqueness of geodesics joining projections in generic position), Theorem 5.5 (multiplication Download English Version:

https://daneshyari.com/en/article/6417885

Download Persian Version:

https://daneshyari.com/article/6417885

Daneshyari.com