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satisfying the specification property or being subshift of finite type to general 5 > 1.
As an application, we obtain the multifractal spectra for the recurrence rate of the
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1. Introduction

Let (X, B, pu,T,d) be a metric measure-preserving system (m.m.p.s.), by which we mean that (X,d) is
a metric space, B is a o-field containing the Borel o-field of X and (X, B, u,T) is a measure-preserving
dynamical system. Under the assumption that (X,d) has a countable base, Poincaré recurrence theorem
implies that p-almost all x € X is recurrent in the sense

lim inf d(T"z,z) = 0 (1.1)

n—oo

(for example, see [11]). Later, Boshernitzan [4] has improved it by a quantitative result

lim infnl/“d(T"m,x) < 00, p-almost everywhere (a.e. for short),
n—oo
where « is the dimension of the space in some sense.
The above results describe whether or not a point is recurrent and how far the orbit will return to
the initial point. Recurrence time is an important aspect used to characterize the behaviors of orbits in
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dynamical systems. Of the research conducted on recurrence time, the first return time of a point has been
well studied in the last decade. The first return time of a point z € X into the set A is defined by

Ta(z) =inf{k € N: Trz e A}

Ornstein and Weiss [21] proved that for a finite partition & of X, if there exists a T-invariant ergodic Borel
probability measure p, then

_log e, (1) (2)
Jim == = (€), pae
where &, (z) is the intersection of £, T~1(¢),---, T~ "*!(£) which contains z, and h,,(§) denotes the measure-

theoretic entropy of T with respect to the partition £. Feng and Wu [10] considered the recurrence set of
the one-sided shift space on m symbols ({0,1,...,m — 1}, ), where the partition ¢ is the cylinders sets
{[0},1],...,[m — 1]}. They proved that the set

1 x
{.13 €{0,1,...,m—1}": liminfw = «a, limsup

n— 00 n n—o0

log 7¢. () (x
e () (@) :7}
n

has Hausdorff dimension one for any 0 < a < v < 400 (see also [26]). Lau and Shu [15] extended this
result to the dynamical systems with specification property by considering the topological entropy instead
of Hausdorff dimension. Barreira and Saussol [2] replaced the cylinders &, (z) with the balls B(x, r) according
to quantity

7(z) =inf{n >1:T"z € B(xz,7)},
and defined the lower and upper recurrence rates of x by

R(z) =lim ié1f R.(x), R(z) = limsup R,(z),
r—

r—0

where R,.(z) = %. They proved that

R(z)=d,(),  R(z)=du(x), p-ae (1.2)

with the conditions that p has a so-called long return time (see [2]) and d,(z) > 0 for p-a.e. x, where
d,(v), c_iu(x) are the lower and upper pointwise dimensions of i at a point x € X respectively. A simple
consequence of this result is a reformulation of Boshernitzan’s theory by noting that

lim inf nl/ad(T”:c, 1:) =0

n—oo
holds for all @ > d,(z). Many researchers have studied the problem when the formulation (1.2) holds
from many different viewpoints. For example, Saussol [25, Theorem 3| proved that formulation (1.2) holds
if the transformation T is piecewise Lipschitz with some condition and the decay of the correlation is
super-polynomial.

Let A(R,(z)) be the set of the accumulation points of R,.(z) as r — 0 and J a compact sub-interval of

(0,4+00). Olsen [20] studied the following set

Gn{ze K:A(R.(z)) =J}
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