The multifractal spectra for the recurrence rates of beta-transformations

Jung-Chao Ban ${ }^{\text {a }}$, Bing Li ${ }^{\text {b,* }}$
a Department of Mathematics, National Dong Hwa University, Hualien 970003, Taiwan
b Department of Mathematics, South China University of Technology, Guangzhou 510640, PR China

A R T I C L E I N F O

Article history:

Received 10 January 2014
Available online 25 June 2014
Submitted by B.S. Thomson
Keywords:
Recurrence
Beta-expansion
Multifractal
Hausdorff dimension

Abstract

In this paper, we show a handy approximate approach to provide a lower bound of the Hausdorff dimension of a given subset in $[0,1)$ related to β-transformation dynamical system. Here approximation means from special class with β-shift satisfying the specification property or being subshift of finite type to general $\beta>1$. As an application, we obtain the multifractal spectra for the recurrence rate of the first return time of β-transformation, including the cases returning to the ball and cylinder.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure-preserving system (m.m.p.s.), by which we mean that (X, d) is a metric space, \mathcal{B} is a σ-field containing the Borel σ-field of X and (X, \mathcal{B}, μ, T) is a measure-preserving dynamical system. Under the assumption that (X, d) has a countable base, Poincaré recurrence theorem implies that μ-almost all $x \in X$ is recurrent in the sense

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} d\left(T^{n} x, x\right)=0 \tag{1.1}
\end{equation*}
$$

(for example, see [11]). Later, Boshernitzan [4] has improved it by a quantitative result

$$
\liminf _{n \rightarrow \infty} n^{1 / \alpha} d\left(T^{n} x, x\right)<\infty, \quad \mu \text {-almost everywhere (a.e. for short), }
$$

where α is the dimension of the space in some sense.
The above results describe whether or not a point is recurrent and how far the orbit will return to the initial point. Recurrence time is an important aspect used to characterize the behaviors of orbits in

[^0]dynamical systems. Of the research conducted on recurrence time, the first return time of a point has been well studied in the last decade. The first return time of a point $x \in X$ into the set A is defined by
$$
\tau_{A}(x)=\inf \left\{k \in \mathbb{N}: T^{k} x \in A\right\}
$$

Ornstein and Weiss [21] proved that for a finite partition ξ of X, if there exists a T-invariant ergodic Borel probability measure μ, then

$$
\lim _{n \rightarrow \infty} \frac{\log \tau_{\xi_{n}(x)}(x)}{n}=h_{\mu}(\xi), \quad \mu \text {-а.е. }
$$

where $\xi_{n}(x)$ is the intersection of $\xi, T^{-1}(\xi), \cdots, T^{-n+1}(\xi)$ which contains x, and $h_{\mu}(\xi)$ denotes the measuretheoretic entropy of T with respect to the partition ξ. Feng and Wu [10] considered the recurrence set of the one-sided shift space on m symbols $\left(\{0,1, \ldots, m-1\}^{\mathbb{N}}, \sigma\right)$, where the partition ξ is the cylinders sets $\{[0],[1], \ldots,[m-1]\}$. They proved that the set

$$
\left\{x \in\{0,1, \ldots, m-1\}^{\mathbb{N}}: \liminf _{n \rightarrow \infty} \frac{\log \tau_{\xi_{n}(x)}(x)}{n}=\alpha, \limsup _{n \rightarrow \infty} \frac{\log \tau_{\xi_{n}(x)}(x)}{n}=\gamma\right\}
$$

has Hausdorff dimension one for any $0 \leq \alpha \leq \gamma \leq+\infty$ (see also [26]). Lau and Shu [15] extended this result to the dynamical systems with specification property by considering the topological entropy instead of Hausdorff dimension. Barreira and Saussol [2] replaced the cylinders $\xi_{n}(x)$ with the balls $B(x, r)$ according to quantity

$$
\tau_{r}(x)=\inf \left\{n \geq 1: T^{n} x \in B(x, r)\right\}
$$

and defined the lower and upper recurrence rates of x by

$$
\underline{R}(x)=\liminf _{r \rightarrow 0} R_{r}(x), \quad \bar{R}(x)=\underset{r \rightarrow 0}{\limsup } R_{r}(x),
$$

where $R_{r}(x)=\frac{\log \tau_{r}(x)}{-\log r}$. They proved that

$$
\begin{equation*}
\underline{R}(x)=\underline{d}_{\mu}(x), \quad \bar{R}(x)=\bar{d}_{\mu}(x), \quad \mu \text {-a.e. } \tag{1.2}
\end{equation*}
$$

with the conditions that μ has a so-called long return time (see [2]) and $\underline{d}_{\mu}(x)>0$ for μ-a.e. x, where $\underline{d}_{\mu}(x), \bar{d}_{\mu}(x)$ are the lower and upper pointwise dimensions of μ at a point $x \in X$ respectively. A simple consequence of this result is a reformulation of Boshernitzan's theory by noting that

$$
\liminf _{n \rightarrow \infty} n^{1 / \alpha} d\left(T^{n} x, x\right)=0
$$

holds for all $\alpha>\underline{d}_{\mu}(x)$. Many researchers have studied the problem when the formulation (1.2) holds from many different viewpoints. For example, Saussol [25, Theorem 3] proved that formulation (1.2) holds if the transformation T is piecewise Lipschitz with some condition and the decay of the correlation is super-polynomial.

Let $A\left(R_{r}(x)\right)$ be the set of the accumulation points of $R_{r}(x)$ as $r \rightarrow 0$ and J a compact sub-interval of $(0,+\infty)$. Olsen [20] studied the following set

$$
G \cap\left\{x \in K: A\left(R_{r}(x)\right)=J\right\}
$$

https://daneshyari.com/en/article/6417890

Download Persian Version:

https://daneshyari.com/article/6417890

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jcban@mail.ndhu.edu.tw (J.-C. Ban), libing0826@gmail.com (B. Li).
 http://dx.doi.org/10.1016/j.jmaa.2014.06.051
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

