Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The multifractal spectra for the recurrence rates of beta-transformations

CrossMark

霐

^a Department of Mathematics, National Dong Hwa University, Hualien 970003, Taiwan
^b Department of Mathematics, South China University of Technology, Guangzhou 510640, PR China

ARTICLE INFO

Article history: Received 10 January 2014 Available online 25 June 2014 Submitted by B.S. Thomson

Keywords: Recurrence Beta-expansion Multifractal Hausdorff dimension

ABSTRACT

In this paper, we show a handy approximate approach to provide a lower bound of the Hausdorff dimension of a given subset in [0, 1) related to β -transformation dynamical system. Here approximation means from special class with β -shift satisfying the specification property or being subshift of finite type to general $\beta > 1$. As an application, we obtain the multifractal spectra for the recurrence rate of the first return time of β -transformation, including the cases returning to the ball and cylinder.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $(X, \mathcal{B}, \mu, T, d)$ be a metric measure-preserving system (m.m.p.s.), by which we mean that (X, d) is a metric space, \mathcal{B} is a σ -field containing the Borel σ -field of X and (X, \mathcal{B}, μ, T) is a measure-preserving dynamical system. Under the assumption that (X, d) has a countable base, Poincaré recurrence theorem implies that μ -almost all $x \in X$ is recurrent in the sense

$$\liminf_{n \to \infty} d(T^n x, x) = 0 \tag{1.1}$$

(for example, see [11]). Later, Boshernitzan [4] has improved it by a quantitative result

 $\liminf_{n\to\infty} n^{1/\alpha} d\big(T^n x, x\big) < \infty, \quad \mu\text{-almost everywhere (a.e. for short)},$

where α is the dimension of the space in some sense.

The above results describe whether or not a point is recurrent and how far the orbit will return to the initial point. Recurrence time is an important aspect used to characterize the behaviors of orbits in

* Corresponding author.

E-mail addresses: jcban@mail.ndhu.edu.tw (J.-C. Ban), libing0826@gmail.com (B. Li).

 $[\]frac{http://dx.doi.org/10.1016/j.jmaa.2014.06.051}{0022-247X/@~2014~Elsevier~Inc.~All~rights~reserved}$

dynamical systems. Of the research conducted on recurrence time, the first return time of a point has been well studied in the last decade. The first return time of a point $x \in X$ into the set A is defined by

$$\tau_A(x) = \inf \left\{ k \in \mathbb{N} : T^k x \in A \right\}.$$

Ornstein and Weiss [21] proved that for a finite partition ξ of X, if there exists a T-invariant ergodic Borel probability measure μ , then

$$\lim_{n \to \infty} \frac{\log \tau_{\xi_n(x)}(x)}{n} = h_{\mu}(\xi), \quad \mu\text{-a.e.}$$

where $\xi_n(x)$ is the intersection of $\xi, T^{-1}(\xi), \dots, T^{-n+1}(\xi)$ which contains x, and $h_{\mu}(\xi)$ denotes the measuretheoretic entropy of T with respect to the partition ξ . Feng and Wu [10] considered the recurrence set of the one-sided shift space on m symbols $(\{0, 1, \dots, m-1\}^{\mathbb{N}}, \sigma)$, where the partition ξ is the cylinders sets $\{[0], [1], \dots, [m-1]\}$. They proved that the set

$$\left\{x \in \{0, 1, \dots, m-1\}^{\mathbb{N}} : \liminf_{n \to \infty} \frac{\log \tau_{\xi_n(x)}(x)}{n} = \alpha, \ \limsup_{n \to \infty} \frac{\log \tau_{\xi_n(x)}(x)}{n} = \gamma\right\}$$

has Hausdorff dimension one for any $0 \le \alpha \le \gamma \le +\infty$ (see also [26]). Lau and Shu [15] extended this result to the dynamical systems with specification property by considering the topological entropy instead of Hausdorff dimension. Barreira and Saussol [2] replaced the cylinders $\xi_n(x)$ with the balls B(x, r) according to quantity

$$\tau_r(x) = \inf\{n \ge 1 : T^n x \in B(x, r)\},\$$

and defined the lower and upper recurrence rates of x by

$$\underline{R}(x) = \liminf_{r \to 0} R_r(x), \qquad \overline{R}(x) = \limsup_{r \to 0} R_r(x),$$

where $R_r(x) = \frac{\log \tau_r(x)}{-\log r}$. They proved that

$$\underline{R}(x) = \underline{d}_{\mu}(x), \qquad \overline{R}(x) = \overline{d}_{\mu}(x), \quad \mu\text{-a.e.}$$
(1.2)

with the conditions that μ has a so-called *long return time* (see [2]) and $\underline{d}_{\mu}(x) > 0$ for μ -a.e. x, where $\underline{d}_{\mu}(x)$, $\overline{d}_{\mu}(x)$ are the lower and upper pointwise dimensions of μ at a point $x \in X$ respectively. A simple consequence of this result is a reformulation of Boshernitzan's theory by noting that

$$\liminf_{n \to \infty} n^{1/\alpha} d(T^n x, x) = 0$$

holds for all $\alpha > \underline{d}_{\mu}(x)$. Many researchers have studied the problem when the formulation (1.2) holds from many different viewpoints. For example, Saussol [25, Theorem 3] proved that formulation (1.2) holds if the transformation T is piecewise Lipschitz with some condition and the decay of the correlation is super-polynomial.

Let $A(R_r(x))$ be the set of the accumulation points of $R_r(x)$ as $r \to 0$ and J a compact sub-interval of $(0, +\infty)$. Olsen [20] studied the following set

$$G \cap \left\{ x \in K : A(R_r(x)) = J \right\}$$

Download English Version:

https://daneshyari.com/en/article/6417890

Download Persian Version:

https://daneshyari.com/article/6417890

Daneshyari.com