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We study static 180 degree domain walls in thin infinite magnetic films. We establish 
the scaling of the minimal energy by Γ -convergence and the energy minimizer profile, 
which turns out to be the so-called transverse wall as predicted in earlier numerical 
and experimental work. Surprisingly, the minimal energy decays faster than the area 
of the film cross section at an infinitesimal cross section diameter. We establish a 
rate of convergence of the rescaled energies as well.
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1. Introduction

1.1. Micromagnetics

In the theory of micromagnetics the energy of micromagnetics of a ferromagnetic body Ω ∈ R3 is given 
by

E(m) = Aex

∫
Ω

|∇m|2 + Kd

∫
R3

|∇u|2 + Q

∫
Ω

ϕ(m) − 2
∫
Ω

Hext ·m,
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where m: Ω → S2 with m = 0 in R3 \ Ω is a unit vector field representing the magnetization vector, Aex , 
Kd, Q are material parameters, Hext is the externally applied magnetic field, ϕ is the anisotropy energy 
density and u is the induced field potential, obtained from Maxwell’s equations of magnetostatics,{

curlHind = 0 in R3,

div(Hind + m) = 0 in R3,

where Hind = ∇u. Namely, u is a weak solution of

Δu = divm in R3,

i.e., ∇u is the Helmoltz projection of m onto the L2 closure of the gradient fields in L2(R3). The energy 
density ϕ is a non-negative function called the anisotropy energy density. It is typically a polynomial, with 
the symmetry properties inherited from those of the underlying crystalline lattice. The zeroes of ϕ form the 
set of preferred directions of magnetization (easy axes), e.g., [6]. According to the theory of micromagnetics, 
stable magnetization patterns are described by the minimizers (global and local) of the micromagnetic energy 
functional, e.g., [14,6–8]. This is a non-convex and nonlocal minimization problem due to the non-convex 
constraint |m| = 1 in Ω. This theory is used for the analysis and design of magnetic devices. It explains 
observations on many length scales, and it also explains the magnetic hysteresis, through the multiplicity 
of local minima, e.g., [6].

1.2. Motivation

In recent years the study of thin structures in micromagnetics, in particular thin films and wires, has
been of great interest, see [1,2,5,9,16–21] for nanowires and [4,7,8,10,15,17]. It was suggested in [1] that 
magnetic nanowires can be used as storage devices. It is known that the magnetization pattern reversal 
time is closely related to the writing and reading speed of such a device, thus it has been suggested to 
study the magnetization reversal and switching processes. In [9] the magnetizetion reversal process has 
been studied numerically in cobalt nanowires by the Landau–Lishitz–Gilbert equation. In thin wires the 
transverse mode has been observed: the magnetization in almost constant on each cross section forming a 
domain wall that propagates along the wire, while in relatively thick wires the vortex wall has been observed: 
the magnetization is approximately tangential to the boundary and forms a vortex which propagates along 
the wire. In [13] similar study has been done for thin nickel wires and the same results have been observed. 
When a homogenous external field is applied in the axial direction of the wire facing the homogenous 
magnetization direction, then at a critical strength the reversal of the magnetization typically starts at 
one end of the wire creating a domain wall, which moves along the wire. The domain wall separates the 
reversed and the not yet reversed parts of the wire. In [3] Cantero-Alvarez and Otto considered the problem 
of finding the scaling of critical field in terms of the thin film cross section and material parameters. The 
authors found four different scalingS and corresponding four different regimes. In Fig. 1 one can see the 
transverse and the vortex wall longitudinal and cross section pictures for wires with a rectangular cross 
section.

A distinctive crossover has been observed between the two different modes, which is expected to occur 
at a critical diameter of the wire. It has been suggested that the magnetization switching process can be 
understood by analyzing the micromagnetics energy minimization problem for different diameters of the 
cross section. In [16] K. Kühn studied 180 degree static domain walls in magnetic wires with circular cross 
sections. Kühn proved that indeed, the transverse mode must occur in thin magnetic wires as was predicted 
by experimental and numerical analysis before in [9] and in [13], while in thick wires a vortex wall has the 
optimal energy scaling. Some of the results proven by K. Kühn for thin wires has been later generalized in 
[12] to any wires with a bounded, Lipschitz and rotationally symmetric cross sections, see also [11]. Slastikov 
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