

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Sets of ideal convergence of sequences of quasi-continuous functions

Tomasz Natkaniec*, Jolanta Wesołowska

Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

ARTICLE INFO

Article history: Received 5 July 2014 Available online 16 October 2014 Submitted by M. Laczkovich

Keywords: Quasi-continuous function Ideal convergence F_{σ} -ideal ω -+-Diagonalizable ideal ω -Generated ideal Weakly Ramsey ideal

ABSTRACT

Lunina's 7-tuples (E^1,\ldots,E^7) of sets of pointwise convergence, divergence to ∞ , divergence to $-\infty$, etc., for sequences of quasi-continuous functions are characterized. Generalizations on ideal convergence are discussed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $\vec{f} = (f_n)_n$ be a sequence of real-valued continuous functions defined on a metric space X. It is not difficult to show that the set $C(\vec{f})$ of all $x \in X$ such that $(f_n(x))_n$ converges is $F_{\sigma\delta}$. On the other hand, Hahn [7] and Sierpiński [18] proved independently that for every $F_{\sigma\delta}$ set $A \subset X$ there is a sequence \vec{f} of continuous functions for which $A = C(\vec{f})$. Further research (see e.g. Kornfel'd [9] and Lipiński [11,12]) involved also sets of points where the sequence is divergent to infinity and the like. The full description of these sets was given by Lunina [13], see Theorem 2 below. We will expand this result in two directions. Firstly, the class of all continuous functions will be replaced by the class QC(X) of all quasi-continuous functions, see Theorem 3. This result will generalize Wesołowska's Theorem on Lipiński's triples for sequences of quasi-continuous functions, see Corollary 4. The second kind of extension of Lunina's Theorem consists in substitution of pointwise convergence of \vec{f} by ideal convergence with respect to some ideal \mathcal{I} on the natural numbers. Borzestowski and Reclaw proved in [2] an ideal version of Lunina's Theorem for sequences of

E-mail addresses: mattn@mat.ug.edu.pl (T. Natkaniec), jolwesol@pg.gda.pl (J. Wesołowska).

^{*} Corresponding author.

continuous functions and for F_{σ} ideals. Using analogous methods we will prove ideal versions of Corollary 4 and Theorem 3.

2. Preliminaries

2.1. Notations

Let X be a metric space. For $A \subset X$ we denote by $\operatorname{int} A$, $\operatorname{cl} A$ and $\operatorname{fr} A$ the interior, closure and boundary of A, respectively. $B(x,\varepsilon)$ denotes the open ball centred at x and with the radius ε . A set A is $\operatorname{semi-open}$ in X if $A \subset \operatorname{cl}(\operatorname{int} A)$. A family of all semi-open sets in X is denoted by $\mathcal{SO}(X)$. The symbols $\mathcal{M}(X)$ and $\operatorname{Baire}(X)$ denote the families of all meager sets and all sets with the Baire property in X. We will write \mathcal{SO} , \mathcal{M} and Baire instead of $\mathcal{SO}(X)$, $\mathcal{M}(X)$ and $\operatorname{Baire}(X)$ if X is fixed. The cardinality of a set A is denoted by |A|. The cardinals $\operatorname{add}(\mathcal{M}(X)) = \min\{|A|: A \subset \mathcal{M}(X) \& \bigcup A \notin \mathcal{M}(X)\}$ and $\operatorname{cov}(\mathcal{M}(X)) = \min\{|A|: A \subset \mathcal{M}(X) \& X = \bigcup A\}$ are called $\operatorname{additivity}$ and $\operatorname{covering}$ of category in X. Recall that $\omega < \operatorname{add}(\mathcal{M}(X)) \le \operatorname{cov}(\mathcal{M}(X)) \le \mathfrak{c}$ for every uncountable Polish space X and those cardinals can be different in different models of ZFC.

For a function $f: X \to \mathbb{R}$ let C(f) denote the set of all continuity points of f and $D(f) = X \setminus C(f)$. By C(X) we denote the class of all continuous real-valued functions defined on X. We will write C instead of C(X), if X is fixed.

2.2. Quasi-continuous functions

We will consider the following weak form of continuity which has been introduced by Kempisty [8]. We say that a function $f: X \to \mathbb{R}$ is quasi-continuous at a point $x_0 \in X$ if for each open set $U \ni x_0$ and each open set $V \ni f(x_0)$ there is a non-empty open set $W \subset U$ with $f(W) \subset V$. f is quasi-continuous if it is quasi-continuous at each point $x \in X$. The class of all quasi-continuous real-valued functions defined on a space X is denoted by QC(X) (or QC if X is fixed). It is known that $f: X \to \mathbb{R}$ is quasi-continuous iff $f^{-1}(U)$ is semi-open for each open set $U \subset \mathbb{R}$. Clearly $SO(X) \subset Baire(X)$, thus every quasi-continuous function has the Baire property. Note that if X is a Baire space then for any quasi-continuous function $f: X \to \mathbb{R}$ the set C(f) is dense (hence residual) in X. Recall also that the sum of a continuous function and a quasi-continuous one is quasi-continuous. (See, e.g. [1].) More properties of quasi-continuous functions can be found e.g. in [17].

In constructions of quasi-continuous functions we apply the following lemma.

Lemma 1 (Borsik). (See [1, Lemma 1].) Let X be an arbitrary metric space. For every nonempty nowhere dense closed set $F \subset X$ satisfying $F \subset \operatorname{cl} G$ for some nonempty open set $G \subset X$ there exists a collection $\{K_{n,m}: n \in \mathbb{N}, m \leq n\}$ of nonempty open sets such that:

- (1) $\operatorname{cl} K_{n,m} \subset G \setminus F$ for all $n \in \mathbb{N}$ and $m \leq n$;
- (2) $\operatorname{cl} K_{n,m} \cap \operatorname{cl} K_{i,j} = \emptyset \text{ for } (n,m) \neq (i,j);$
- (3) for every $x \notin F$ there exists an open neighbourhood V of x such that the set $\{(n,m): \operatorname{cl} K_{n,m} \cap V \neq \emptyset\}$ has at most one element;
- (4) for every $x \in F$, its open neighbourhood V and a number $m \in \mathbb{N}$ there exists $n \geq m$ such that $K_{n,m} \cap V \neq \emptyset$.

Consequently, $F \subset \operatorname{cl} \bigcup_{n \geq m} K_{n,m}$ for each $m \in \mathbb{N}$ and both $F \cup \bigcup_{n \geq m} \operatorname{cl} K_{n,m}$ and $F \cup \bigcup_{n \in \mathbb{N}, m \leq n} \operatorname{cl} K_{n,m}$ are closed in G.

Download English Version:

https://daneshyari.com/en/article/6417941

Download Persian Version:

https://daneshyari.com/article/6417941

<u>Daneshyari.com</u>