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© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let �f = (fn)n be a sequence of real-valued continuous functions defined on a metric space X. It is not 
difficult to show that the set C(�f) of all x ∈ X such that (fn(x))n converges is Fσδ. On the other hand, 
Hahn [7] and Sierpiński [18] proved independently that for every Fσδ set A ⊂ X there is a sequence �f
of continuous functions for which A = C(�f). Further research (see e.g. Kornfel’d [9] and Lipiński [11,12]) 
involved also sets of points where the sequence is divergent to infinity and the like. The full description of 
these sets was given by Lunina [13], see Theorem 2 below. We will expand this result in two directions. Firstly, 
the class of all continuous functions will be replaced by the class QC(X) of all quasi-continuous functions, 
see Theorem 3. This result will generalize Wesołowska’s Theorem on Lipiński’s triples for sequences of 
quasi-continuous functions, see Corollary 4. The second kind of extension of Lunina’s Theorem consists in 
substitution of pointwise convergence of �f by ideal convergence with respect to some ideal I on the natural 
numbers. Borzestowski and Recław proved in [2] an ideal version of Lunina’s Theorem for sequences of 
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continuous functions and for Fσ ideals. Using analogous methods we will prove ideal versions of Corollary 4
and Theorem 3.

2. Preliminaries

2.1. Notations

Let X be a metric space. For A ⊂ X we denote by intA, clA and frA the interior, closure and boundary 
of A, respectively. B(x, ε) denotes the open ball centred at x and with the radius ε. A set A is semi-open
in X if A ⊂ cl(intA). A family of all semi-open sets in X is denoted by SO(X). The symbols M(X) and 
Baire(X) denote the families of all meager sets and all sets with the Baire property in X. We will write 
SO, M and Baire instead of SO(X), M(X) and Baire(X) if X is fixed. The cardinality of a set A is 
denoted by |A|. The cardinals add(M(X)) = min{|A|: A ⊂ M(X) & 

⋃
A /∈ M(X)} and cov(M(X)) =

min{|A|: A ⊂ M(X) & X =
⋃

A} are called additivity and covering of category in X. Recall that ω <

add(M(X)) ≤ cov(M(X)) ≤ c for every uncountable Polish space X and those cardinals can be different 
in different models of ZFC.

For a function f : X → R let C(f) denote the set of all continuity points of f and D(f) = X \ C(f). By 
C(X) we denote the class of all continuous real-valued functions defined on X. We will write C instead of 
C(X), if X is fixed.

2.2. Quasi-continuous functions

We will consider the following weak form of continuity which has been introduced by Kempisty [8]. We 
say that a function f : X → R is quasi-continuous at a point x0 ∈ X if for each open set U � x0 and each 
open set V � f(x0) there is a non-empty open set W ⊂ U with f(W ) ⊂ V . f is quasi-continuous if it is 
quasi-continuous at each point x ∈ X. The class of all quasi-continuous real-valued functions defined on 
a space X is denoted by QC(X) (or QC if X is fixed). It is known that f : X → R is quasi-continuous iff 
f−1(U) is semi-open for each open set U ⊂ R. Clearly SO(X) ⊂ Baire(X), thus every quasi-continuous 
function has the Baire property. Note that if X is a Baire space then for any quasi-continuous function 
f : X → R the set C(f) is dense (hence residual) in X. Recall also that the sum of a continuous function and 
a quasi-continuous one is quasi-continuous. (See, e.g. [1].) More properties of quasi-continuous functions can 
be found e.g. in [17].

In constructions of quasi-continuous functions we apply the following lemma.

Lemma 1 (Borsik). (See [1, Lemma 1].) Let X be an arbitrary metric space. For every nonempty nowhere 
dense closed set F ⊂ X satisfying F ⊂ clG for some nonempty open set G ⊂ X there exists a collection 
{Kn,m: n ∈ N, m ≤ n} of nonempty open sets such that:

(1) clKn,m ⊂ G \ F for all n ∈ N and m ≤ n;
(2) clKn,m ∩ clKi,j = ∅ for (n, m) 	= (i, j);
(3) for every x /∈ F there exists an open neighbourhood V of x such that the set {(n, m): clKn,m ∩ V 	= ∅}

has at most one element;
(4) for every x ∈ F , its open neighbourhood V and a number m ∈ N there exists n ≥ m such that Kn,m ∩

V 	= ∅.

Consequently, F ⊂ cl
⋃

n≥m Kn,m for each m ∈ N and both F ∪
⋃

n≥m clKn,m and F ∪
⋃

n∈N,m≤n clKn,m

are closed in G.
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