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1. Introduction

Let V and H be two real separable Hilbert spaces, V' continuously embedding in H. The scalar product
and norms of H and V, are denoted, respectively, by (u,v), |u] and ((u,v)), ||u||. Let A be the self-adjoint
operator defined by the triplet {V, H, ((u,v))}. Consider o > 0, @ € R. Then

D(A)={ue H;A®ue H}
is a Hilbert space equipped with the scalar product
(u,v) p(acy = (A%, A%)

cf. J.L. Lions [7].
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In the above conditions, we have the following initial value problem:

u”(t) + p(t)Au(t) + a(‘A*gu(t)F)u(t) +b(|A™M (t)])Au/(t) = f(t) in (0,00);
u(0) =u’,  /(0) =u'.

(%)

Here pu(t), a(s), b(s) are positive functions; @, 7 real numbers and f(t) € D(A%)’, D(A*)’ dual of D(A%).
We motivate problem (*). Grotta Ragazzo [2] studied the equation

s

1 «
Ut — Ugy — QU + (— /qux> u=0 in (0,7) xR (1.1)
™
0

as an approximation of the Klein—Gordon equation
Ugp — Upe — at +u' T2 =0 in (0,7) x R, (1.2)

Observe that Eq. (1.2) with @« = 1 and a = 0 is the meson equation of Schiff [12] (cf. also Jorgens [3]).
Louredo, Aratjo and Milla Miranda [9] analyzed the equation

W — p(t)Au+ a(/uzdx)u + b(/u’2dm> W' =0 in 2 x(0,00) (1.3)
2 2

with a nonlinear boundary condition. Here (2 is a bounded domain of R™. The physical motivation of
Eq. (1.3) when 2 is an open interval can be found in [9].
J.L. Lions [6] formulated an open question on the existence of solutions of the equation

Yy — Ay + (//y%xds)y =v(t)d(z —b) in 2 x (0,00) (1.4)

where §(x — b) is the Dirac mass supported at {b}, b € (2.

In Milla Miranda, Louredo and Medeiros [11] an answer to this question with a modification of the
nonlinear term is given. Eq. (1.4) motivates us to consider the non-smooth function f in Eq. (x).

Existence of solutions u of problem (x) with b = 0 and a particular a(s) was obtained in Milla Miranda,
Louredo and Medeiros [11]. The term b(|A~"4/|)Au’ is introduced in Eq. (%) with the finality of obtaining
the decay of solutions of the problem.

In this paper the existence of bounded solutions of problem () and the uniqueness of solutions for
particular real numbers 6 and 7 are obtained. The exponential decay of the energy associated to () is also
derived. In Section 5 we give some applications of our result. In our approach, in the existence of solutions,
we use the Theory of Self-Adjoint Operators in Hilbert spaces and the compactness Aubin-Lions Theorem.
In the decay of solutions, a functional of Lyapunov is applied.

2. Main results

We use the notation D(A%)' = D(A™%), a € R, o > 0. Identifying H with H’, we have
D(A%) < H < D(A™%).

Here and in what follows the notation X < Y means that the space X is dense in the space Y and the
embedding of X in Y is continuous. Note that D(A~%)" = D(A®). Also, if 8,7 € R with 8 >+, we have

D(AP) — D(A").
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