
J. Math. Anal. Appl. 423 (2015) 1804–1824

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Chernoff’s distribution and differential equations of parabolic and 

Airy type

Piet Groeneboom a,∗, Steven Lalley b,1, Nico Temme c,2

a Delft University, Netherlands
b University of Chicago, United States
c CWI, Netherlands 3

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2013
Available online 28 October 2014
Submitted by U. Stadtmueller

Keywords:
Parabolic partial differential 
equations
Airy functions
Scorer’s functions
Brownian motion with parabolic 
drift
Cameron–Martin–Girsanov
Feynman–Kac

We give a direct derivation of the distribution of the maximum and the location 
of the maximum of one-sided and two-sided Brownian motion with a negative 
parabolic drift. The argument uses a relation between integrals of special functions, 
in particular involving integrals with respect to functions which can be called 
“incomplete Scorer functions”. The relation is proved by showing that both integrals, 
as a function of two parameters, satisfy the same extended heat equation, and 
the maximum principle is used to show that these solutions must therefore have 
the stated relation. Once this relation is established, a direct derivation of the 
distribution of the maximum and location of the maximum of Brownian motion 
minus a parabola is possible, leading to a considerable shortening of the original 
proofs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let {W (t) : t ∈ R} be a standard two-sided Brownian motion, originating from zero. The determination 
of the distribution of the (almost surely unique) location of the maximum of {W (t) − t2 : t ∈ R} has a 
long history, which probably started with Chernoff’s paper [1] in a study of the limit distribution of an 
estimator of the mode of a distribution. In the latter paper the density of the location of the maximum of 
{W (t) − t2 : t ∈ R}, which we will denote by

Z = argmaxt

{
W (t) − t2, t ∈ R

}
, (1.1)
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is characterized in the following way. Let u(t, x) be the solution of the heat equation

∂

∂t
u(t, x) = −1

2
∂2

∂x2u(t, x),

for x ≤ t2, under the boundary conditions

u(t, x) ≥ 0, u
(
t, t2

) def= lim
x↑t2

u(t, x) = 1, (t, x) ∈ R
2, lim

x↓−∞
u(t, x) = 0, t ∈ R.

Furthermore, let the function u2 be defined by

u2(t) = lim
x↑t2

∂

∂x
u(t, x).

Then the density of (1.1) is given by

fZ(t) = 1
2u2(t)u2(−t), t ∈ R. (1.2)

The original attempts to compute the density fZ were based on numerically solving the heat equation 
above, but it soon became clear that this method did not produce a very accurate solution, mainly because 
of the rather awkward boundary conditions. However, around 1984 the connection with Airy functions was 
discovered and this connection was exploited to give analytic solutions in the papers [2,13,4], which were 
all written in 1984, although the last paper appeared much later.

There seems to be a recent revival of interest in this area of research, see, e.g., [9,5–7,10,8]. Also, the main 
theorem (Theorem 2.3 in [3]) uses Theorem 3.1 of [4] in an essential way. These recent papers (except [10]) 
rely a lot on the results in [2] and [4], but it seems fair to say that the derivation of these results in [2]
and [4] is not a simple matter. The most natural approach still seems to use the Cameron–Martin–Girsanov 
formula for making the transition from Brownian motion with drift to Brownian motion without drift, and 
next to use the Feynman–Kac formula for determining the distribution of the Radon–Nikodym derivative 
of the Brownian motion with parabolic drift with respect to the Brownian motion without drift from 
the corresponding second order differential equation. This is the approach followed in [4]. However, the 
completion of these arguments used a lot of machinery which one would prefer to avoid. For this reason we 
give an alternative approach in the present paper.

The starting point of our approach is Theorem 2.1 in [4], which is given below for convenience. Theorem 2.1 
in [4] in fact deals with the process {W (t) − ct2 : t ∈ R} for an arbitrary positive constant c > 0, but since 
we can always deduce the results for general c from the case c = 1, using Brownian scaling, see, e.g., [8], 
we take for convenience c = 1 in the theorem below. Another simplification is that we consider first hitting 
times of 0 for processes starting at x < 0 instead of first hitting times of a of processes starting at x < a for 
an arbitrary a ∈ R, using space homogeneity. We made slight changes of notation, in particular the function 
hx, x > 0, of [4] is again denoted by hx, but now with a negative argument, so hx in our paper corresponds 
to h−x in [4].

Theorem 1.1. (See Theorem 2.1 in [4].) Let, for s ∈ R and x < 0, Q(s,x) be the probability measure on the 
Borel σ-field of C([s, ∞) : R), corresponding to the process {X(t) : t ≥ s}, where X(t) = W (t) − t2, starting 
at position x at time s, and where {W (t) : t ≥ s} is Brownian motion, starting at x + s2 at time s. Let the 
first passage time τ0 of the process X be defined by

τ0 = inf
{
t ≥ s : X(t) = 0

}
,

where, as usual, we define τ0 = ∞, if {t ≥ s : X(t) = 0} = ∅. Then:
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