Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Real analytic families of harmonic functions in a planar domain with a small hole

M. Dalla Riva^{a,*}, P. Musolino^b

 ^a Centro de Investigação e Desenvolvimento em Matemática e Aplicações (CIDMA), Universidade de Aveiro, Portugal
^b Dipartimento di Matematica, Università degli Studi di Padova, Italy

A R T I C L E I N F O

Article history: Received 11 April 2014 Available online 22 August 2014 Submitted by W.L. Wendland

Keywords: Singularly perturbed perforated planar domains Harmonic functions Real analytic continuation in Banach space

ABSTRACT

We consider a Dirichlet problem in a planar domain with a hole of diameter proportional to a real parameter ϵ and we denote by u_{ϵ} the corresponding solution. The behavior of u_{ϵ} for ϵ small and positive can be described in terms of real analytic functions of two variables evaluated at $(\epsilon, 1/\log \epsilon)$. We show that under suitable assumptions on the geometry and on the boundary data one can get rid of the logarithmic behavior displayed by u_{ϵ} for ϵ small and describe u_{ϵ} by real analytic functions of ϵ . Then it is natural to ask what happens when ϵ is negative. The case of boundary data depending on ϵ is also considered. The aim is to study real analytic families of harmonic functions which are not necessarily solutions of a particular boundary value problem.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper continues the work begun by the authors in [1]. Indeed, in [1], the case of harmonic function in a perforated domain of \mathbb{R}^n , with $n \geq 3$, has been investigated. Here instead we focus on the two-dimensional case. We begin by introducing some notation. We fix once for all

 $\alpha \in [0, 1[.$

Then we fix two sets Ω^o and Ω^i in the two-dimensional Euclidean space \mathbb{R}^2 . The letter 'o' stands for 'outer domain' and the letter 'i' stands for 'inner domain'. We assume that Ω^o and Ω^i satisfy the following condition.

http://dx.doi.org/10.1016/j.jmaa.2014.08.037

^{*} Corresponding author at: Departamento de Matemática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

E-mail addresses: matteo.dallariva@gmail.com (M. Dalla Riva), musolinopaolo@gmail.com (P. Musolino).

URLs: http://https://sites.google.com/site/matteodallariva/ (M. Dalla Riva), http://https://sites.google.com/site/musolinopaolo/ (P. Musolino).

⁰⁰²²⁻²⁴⁷X/© 2014 Elsevier Inc. All rights reserved.

 Ω^{o} and Ω^{i} are open bounded connected subsets of \mathbb{R}^{2} of class $C^{1,\alpha}$ such that $\mathbb{R}^{2} \setminus \mathrm{cl}\Omega^{o}$ and $\mathbb{R}^{2} \setminus \mathrm{cl}\Omega^{i}$ are connected (1) and such that the origin 0 of \mathbb{R}^{2} belongs both to Ω^{o} and Ω^{i} .

Here and in the sequel cl denotes the closure. For the definition of functions and sets of the usual Schauder classes $C^{0,\alpha}$ and $C^{1,\alpha}$, we refer for example to Gilbarg and Trudinger [5, §6.2]. We note that condition (1) implies that Ω^o and Ω^i have no holes and that there exists a real number ϵ_0 such that

$$\epsilon_0 > 0$$
 and $\epsilon \operatorname{cl} \Omega^i \subseteq \Omega^o$ for all $\epsilon \in]-\epsilon_0, \epsilon_0[$.

Then we denote by $\Omega(\epsilon)$ the perforated domain defined by

$$\Omega(\epsilon) \equiv \Omega^o \setminus \left(\epsilon \operatorname{cl} \Omega^i\right) \quad \forall \epsilon \in \left]-\epsilon_0, \epsilon_0\right[.$$

A simple topological argument shows that $\Omega(\epsilon)$ is an open bounded connected subset of \mathbb{R}^2 of class $C^{1,\alpha}$ for all $\epsilon \in]-\epsilon_0, \epsilon_0[\setminus \{0\}$. Moreover, the boundary $\partial \Omega(\epsilon)$ of $\Omega(\epsilon)$ has exactly the two connected components $\partial \Omega^o$ and $\epsilon \partial \Omega^i$, for all $\epsilon \in]-\epsilon_0, \epsilon_0[$. We also note that $\Omega(0) = \Omega^o \setminus \{0\}$.

Now let $g^o \in C^{1,\alpha}(\partial \Omega^o)$ and $g^i \in C^{1,\alpha}(\partial \Omega^i)$. For all $\epsilon \in]-\epsilon_0, \epsilon_0[\setminus \{0\}]$, let u_{ϵ} be the unique function of $C^{1,\alpha}(\operatorname{cl} \Omega(\epsilon))$ such that

$$\begin{cases} \Delta u_{\epsilon} = 0 & \text{in } \Omega(\epsilon), \\ u_{\epsilon}(x) = g^{o}(x) & \text{for } x \in \partial \Omega^{o}, \\ u_{\epsilon}(x) = g^{i}(x/\epsilon) & \text{for } x \in \epsilon \partial \Omega^{i}. \end{cases}$$
(2)

Let u_0 be the unique function of $C^{1,\alpha}(\operatorname{cl} \Omega^o)$ such that

$$\begin{cases} \Delta u_0 = 0 & \text{in } \Omega^o, \\ u_0(x) = g^o(x) & \text{for } x \in \partial \Omega^o. \end{cases}$$
(3)

We fix a point p in $\Omega^{\circ} \setminus \{0\}$ and take $\epsilon_p \in [0, \epsilon_0[$ such that $p \in \Omega(\epsilon)$ for all $\epsilon \in [-\epsilon_p, \epsilon_p[$. Then $u_{\epsilon}(p)$ is defined for all $\epsilon \in [-\epsilon_p, \epsilon_p[$ and we can ask, for example, the following question.

What can be said of the function from $]0, \epsilon_p[$ to \mathbb{R} which takes ϵ to $u_{\epsilon}(p)$?

Questions of this type are typical in the frame of asymptotic analysis and are usually investigated by means of asymptotic expansion methods (see for example Maz'ya, Nazarov, and Plamenevskij [11, §2.4.1]). The techniques of asymptotic analysis usually aim at representing the behavior of $u_{\epsilon}(p)$ as $\epsilon \to 0^+$ in terms of regular functions of ϵ plus a remainder which is smaller than a known infinitesimal function of ϵ . In this paper, instead, we adopt the functional analytic approach proposed by Lanza de Cristoforis. By such an approach, one can prove that there exist $\epsilon_p \in [0, \epsilon_0], \epsilon_p < 1$, and a real analytic function U_p from $]-\epsilon_p, \epsilon_p[\times]1/\log \epsilon_p, -1/\log \epsilon_p[$ to \mathbb{R} such that

$$u_{\epsilon}(p) = U_p[\epsilon, 1/\log\epsilon] \quad \forall \epsilon \in]0, \epsilon_p[\tag{4}$$

and that $u_0(p) = U_p[0,0]$ (cf., *e.g.*, Lanza de Cristoforis [9]). We observe that the logarithmic behavior displayed by u_{ϵ} for ϵ small only arises in dimension two and does not appear in higher dimensions (cf., *e.g.*, Lanza de Cristoforis [9]). Also, if instead of considering a Dirichlet boundary value problem we considered a mixed boundary value problem with a Dirichlet condition in the inner component of the boundary and a Neumann condition in the outer component, then one can prove that the logarithmic behavior appears Download English Version:

https://daneshyari.com/en/article/6418069

Download Persian Version:

https://daneshyari.com/article/6418069

Daneshyari.com