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In order to describe the dynamics of crowded ions (charged particles), we use an 
energetic variational approach to derive a modified Poisson–Nernst–Planck (PNP) 
system which includes an extra dissipation due to the effective velocity differences 
between ion species. Such a system has more complicated nonlinearities than the 
original PNP system but with the same equilibrium states. Using Galerkin’s method 
and Schauder’s fixed-point theorem, we develop a local existence theorem of classical 
solutions for the modified PNP system. Different dynamics (but same equilibrium 
states) between the original and modified PNP systems can be represented by 
numerical simulations using finite element method techniques.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of ion transport is important for the study of biophysics as it is involved in almost all 
biological activities. The transport of charged particles (ions), by nature, is a multiscale problem. The 
competition of thermal fluctuation, in terms of entropy, and molecular (Coulomb) interactions mainly give 
intriguing and significant behaviors of the systems. Choices of the variables, in terms of energetic functionals 
and entropy production (dissipation) functionals, demonstrate specific physical situations or applications in 
consideration. By employing an energetic variational approach (see Section 2.1), we can derive the original 
Poisson–Nernst–Planck (PNP) system (see Section 2.2) which describe dilute ionic liquids [20–22].
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The transport of ions in biological environments are usually in non-ideal situations. Ion channels often 
have characteristic property of very high density distributions of ions that are crowded into tiny spaces 
with huge electric and chemical fields and forces of excluded volume (cf. [6–8]). To describe the dynamics 
of crowded ions, the energy functional and the dissipation functional should be modified. For the energy 
functional, we combined the energy functional of the original PNP system with Lennard-Jones type (LJ) 
potential (similar to those used for molecular dynamic simulations) and derive new PNP-type systems which 
captured certain properties of selectivity of ion channels (cf. [9,12,14,17]).

The dynamical systems for transport of ions involve various types of entropy production. The classical 
PNP equation involves the entropy production, the dissipation, in terms of sum of damping due to individual 
ion species. In this study, we take into consideration of the extra dissipation due to a drag force between 
different species. This extra dissipative effect, due to the drag between ion species, is incorporated into the 
derivation of a modified PNP system. The entropy production of modified PNP mainly contributes to the 
dynamics of the system, while the equilibrium states, which are determined by the free energy, remain the 
same. In other applications of physics, such consideration had been taken into account in the study of ion 
heating in a plasma flow (cf. [5]).

The modified PNP system has more complicated nonlinearities than the original PNP system but with 
the same equilibrium states. Using Galerkin’s method and Schauder’s fixed-point theorem, we develop a local 
existence theorem of classical solutions for the modified PNP system. Furthermore, different dynamics (but 
same equilibrium states) between the original and modified PNP systems can be represented by numerical 
simulations using finite element method techniques.

The rest of this paper is organized as follows: In Section 2, we derive the modified PNP system. The local 
existence of the modified PNP system is proved in Section 3. In Section 4, we provide numerical results of 
the modified PNP system and comparisons to those of the original PNP system.

2. General diffusion for transport of charged particles

In this section, we firstly introduce the energetic variation framework for diffusions and then apply it to 
derive the original PNP system. Such a framework can be employed to the problem of transport of ions in 
non-ideal, non-diluted situations. We derive a modified PNP system that takes into account of additional 
dissipation due to the effect of velocity differences between ion species.

2.1. Energetic variational approaches for diffusion

For an isothermal closed system, the combination of the First Law and the Second Law of Thermody-
namics yields the following energy dissipation law:

d

dt
Etotal = −�, (2.1)

where Etotal is the sum of kinetic energy and total Helmholtz free energy, and � is the entropy production 
(energy dissipation rate in this case). The choice of total energy functional and dissipation functional, 
together with the kinematic (transport) relation of the variables employed in the system, determines all the 
physics and the assumptions for problem.

The energetic variational approach is the precise framework to obtain the force balance equations from the 
general dissipation law (2.1). In particular, the Least Action Principle (LAP) will determine the Hamiltonian 
part of the system and the Maximum Dissipation Principle (MDP) for the dissipative part. Formally, LAP 
states the fact that force multiplies distance is equal to the work, i.e.,

δE = force × δx, (2.2)
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