

Existence of standing waves for the complex Ginzburg-Landau equation

Rolci Cipolatti ${ }^{\text {a }}$, Flávio Dickstein ${ }^{\text {a,1 }}$, Jean-Pierre Puel ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21944-970 Rio de Janeiro, RJ, Brazil
b Université de Versailles Saint-Quentin, LMV, CNRS, UMR 8100, 45 avenue des Etats Unis, 78035 Versailles, France

A R T I C L E I N F O

Article history:

Received 24 April 2014
Available online 3 September 2014
Submitted by M. del Pino

Keywords:

Standing waves
Complex Ginzburg-Landau equation

Abstract

We study the existence of standing wave solutions of the complex Ginzburg-Landau equation

$$
\begin{equation*}
\varphi_{t}-e^{i \theta}(\rho I-\Delta) \varphi-e^{i \gamma}|\varphi|^{\alpha} \varphi=0 \tag{GL}
\end{equation*}
$$

in \mathbb{R}^{N}, where $\alpha>0,(N-2) \alpha<4, \rho>0$ and $\theta, \gamma \in \mathbb{R}$. We show that for any $\theta \in(-\pi / 2, \pi / 2)$ there exists $\varepsilon>0$ such that (GL) has a non-trivial standing wave solution if $|\gamma-\theta|<\varepsilon$. Analogous result is obtained in a ball $\Omega \in \mathbb{R}^{N}$ for $\rho>-\lambda_{1}$, where λ_{1} is the first eigenvalue of the Laplace operator with Dirichlet boundary conditions.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The complex Ginzburg-Landau equation

$$
\begin{equation*}
\psi_{t}=z_{1} \Delta \psi+z_{2}|\psi|^{\alpha} \psi+z_{3} \psi, \tag{1.1}
\end{equation*}
$$

for $\alpha=2, z_{1}, z_{2}, z_{3} \in \mathbb{C}$, with $\Re z_{1} \geq 0$ was proposed independently by Diprima, Eckhaus, Segel [8] and Stewartson, Stuart [22] to model the interaction of plane waves in fluid flows and plays a central role in the study of the development of nonlinear instabilities in fluid dynamics. See [5,24] and the references cited therein for a discussion of various problems where the complex Ginzburg-Landau equation applies. Local

[^0](global for $\Re z_{2}<0$) well-posedness of (1.1) (for $\alpha>0$) was derived in both \mathbb{R}^{N} and a domain $\Omega \subset \mathbb{R}^{N}$, under various boundary conditions and assumptions on the parameters, see $[9,10,16,20]$ and the references therein.

The existence of special solutions of (1.1) (holes, fronts, pulses, sources, sinks, etc.) is discussed in numerous works, see e.g. [6,14,15,18,19,21,24]. We look for standing wave solutions. Replacing φ by $e^{i \eta t} \varphi$ for some $\eta \in \mathbb{R}$ and rescaling the equation, we rewrite (1.1) as

$$
\begin{equation*}
\partial_{t} \varphi+e^{i \theta}(\rho \varphi-\Delta \varphi)=e^{i \gamma}|\varphi|^{\alpha} \varphi, \tag{1.2}
\end{equation*}
$$

where $\rho \in \mathbb{R}$. Given $\omega \in \mathbb{R}$, a standing wave of the form $\varphi=e^{i \omega t} u(x)$ is a solution of (1.2) if and only if u satisfies

$$
\begin{equation*}
i \omega u+e^{i \theta}(\rho u-\Delta u)=e^{i \gamma}|u|^{\alpha} u \tag{1.3}
\end{equation*}
$$

Plane waves $\varphi=e^{i(k x-\omega t)}$, where $k, \omega \in \mathbb{R}$ are particular standing waves. It is easy to see that (1.2) admits plane wave solutions in \mathbb{R}^{N} for all values of ρ, θ, γ and α. Stationary solutions are also standing waves of special kind. In the case of the nonlinear heat equation $\theta=\gamma=0$ or $\theta=0, \gamma=\pi$ then $\omega=0$, so that Eq. (1.3) reduces to the nonlinear elliptic equation $\rho u-\Delta u= \pm|u|^{\alpha} u$. The case of the nonlinear Schrödinger equation $\theta= \pm \gamma= \pm \frac{\pi}{2}$ leads to the equation $(\rho \pm \omega) u-\Delta u= \pm|u|^{\alpha} u$.

We obtain here solutions that are different from these particular ones. In fact, using well known results of the theory of nonlinear elliptic equations for the case $\omega=0$ and $\theta=\gamma$, we show the existence of nontrivial standing wave solutions for $\theta \approx \gamma$ by a perturbation argument, as we describe below.

Eq. (1.3) will be considered both in the whole space $\Omega=\mathbb{R}^{N}$ or in a ball $\Omega \subset \mathbb{R}^{N}$ with Dirichlet boundary condition, for $N \geq 1$. We suppose $\theta, \gamma \in(-\pi / 2, \pi / 2)$ and α subcritical, i.e.

$$
\begin{equation*}
0<\alpha, \quad(N-2) \alpha<4, \tag{1.4}
\end{equation*}
$$

which includes the relevant case $\alpha=2$, for $N \leq 3$. For $\theta=\gamma$ and $\omega=0$, (1.3) reduces to

$$
\begin{equation*}
\rho u-\Delta u-|u|^{\alpha} u=0 . \tag{1.5}
\end{equation*}
$$

Consider first $\Omega=\mathbb{R}^{N}$, in which case we assume that $\rho>0$. It was shown in [13] that (1.5) has a unique positive radially symmetric solution $U \in C^{2}\left(\mathbb{R}^{N}\right) \cap C_{0}\left(\mathbb{R}^{N}\right) .\left(C_{0}\left(\mathbb{R}^{N}\right)\right.$ is the space of continuous functions which tend to zero at infinity.) In fact, $U \in H_{\mathrm{rad}}^{2}\left(\mathbb{R}^{N}\right)$, the subspace of radial functions of $H^{2}\left(\mathbb{R}^{N}\right)$. Note that (1.5) is phase invariant, i.e., $U e^{i \beta} \in \mathbf{H}_{\mathrm{rad}}^{2}\left(\mathbb{R}^{N}\right)$ is also a solution for all $\beta \in \mathbb{R}$. Here and in the rest of this paper we consider real spaces composed of complex-valued functions, and distinguish them from real spaces of real-valued functions by using bold face typing.

Theorem 1.1. Assume (1.4) holds and suppose $\rho>0$. Let $U \in H_{\mathrm{rad}}^{2}\left(\mathbb{R}^{N}\right)$ be the unique positive radial solution of (1.5). Given $\theta \in(-\pi / 2, \pi / 2)$ and $\beta \in \mathbb{R}$ there exists $0<\varepsilon<\min \{\pi / 2-\theta, \pi / 2+\theta\}$ and a C^{1} mapping $g:(\theta-\varepsilon, \theta+\varepsilon) \rightarrow \mathbb{R} \times \mathbf{H}_{\mathrm{rad}}^{2}\left(\mathbb{R}^{N}\right), g(\gamma)=\left(\omega_{\gamma}, u_{\gamma}\right)$, satisfying $\omega_{\theta}=0, u_{\theta}=U e^{i \beta}$ and such that $\varphi_{\gamma}=e^{i \omega_{\gamma} t} u_{\gamma}$ is a solution of (1.2).

In the bounded domain case of the unitary ball Ω of \mathbb{R}^{N}, we suppose that

$$
\begin{equation*}
\rho>-\lambda_{1}, \tag{1.6}
\end{equation*}
$$

where λ_{1} is the first eigenvalue associate to the Laplace-Dirichlet operator in Ω. As in the case of the whole space, (1.5) admits a unique positive solution $U \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, which is radial and radially decreasing. The following result is analogous to Theorem 1.1.

https://daneshyari.com/en/article/6418102

Download Persian Version:
https://daneshyari.com/article/6418102

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: cipolatti@ufrj.br (R. Cipolatti), flavio@labma.ufrj.br (F. Dickstein), jppuel@math.uvsq.fr (J.-P. Puel).
 1 Flávio Dickstein was partially supported by CNPq (Brazil, Produtividade em Pesquisa grant n. 3303414/2013-8).
 2 This work has been done while Jean-Pierre Puel was visiting Universidade Federal do Rio de Janeiro as a "Professor Visitante Especial" of the "Programa Ciência sem Fronteiras" of Capes/CNPq (Brazil, Pesquisador Visitante grant n. 402349/2012-1).

