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In this paper we revisit a discrete predator–prey model with a non-monotonic 
functional response, originally presented in Hu, Teng, and Zhang (2011) [6]. First, by 
citing several examples to illustrate the limitations and errors of the local stability 
of the equilibrium points E3 and E4 obtained in this article, we formulate an easily 
verified and complete discrimination criterion for the local stability of the two 
equilibria. Here, we present a very useful lemma, which is a corrected version of 
a known result, and a key tool in studying the local stability and bifurcation of an 
equilibrium point in a given system. We then study the stability and bifurcation 
for the equilibrium point E1 of this system, which has not been considered in any 
known literature. Unlike known results that present a large number of mathematical 
formulae that are not easily verified, we formulate easily verified sufficient conditions 
for flip bifurcation and fold bifurcation, which are explicitly expressed by the 
coefficient of the system. The center manifold theory and Project Method are the 
main tools in the analysis of bifurcations. The theoretical results obtained are further 
illustrated by numerical simulations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Over the last two decades, increasing numbers of studies have investigated discrete population models. 
See, for example, [1–7,9,11,12,14,15] and the references cited therein. This is due in part to the fact that 
the discrete models are more appropriate to describe the evolution rule of population than the continuous 
models, when populations have non-overlapping generations or the populations size is small. Additionally, 
some discrete models have more richer dynamical behavior than the corresponding continuous models. For 
example, it is well-known that the single-species discrete Logistic model has very complex dynamical behav-
ior, from period-doubling bifurcations to chaotic behavior [8,13], whereas the solutions for corresponding 
continuous Logistic model are monotonic.

Based on the following continuous-time predator–prey model considered by Ruan and Xiao in [14],
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(1.1)

where x(t) and y(t) denote the numbers of prey and predator at time t, respectively, K > 0 is the carrying 
capacity of the prey, r > 0 is the intrinsic growth rate, μ > 0 is the conversion coefficient, D > 0 is the 
death rate of the predator and a > 0 is the half-saturation constant, in 2011. Hu, et al. [6], considered the 
stability and bifurcation of the following discrete model, corresponding to (1.1),
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(1.2)

where r, a, μ, D and K are defined as in model (1.1). It is assumed that the initial values of the solutions 
in system (1.2) satisfy x(0) > 0, y(0) > 0 and all the parameters are positive. It is easy to prove that if the 
initial values (x(0), y(0)) of the system (1.2) are positive, the corresponding solution (x(n), y(n)) is positive 
too.

In view of the biological meaning of system (1.2), one only considers the stability and bifurcation for 
nonnegative equilibria of the system.

For the existence of the nonnegative equilibria of system (1.2), the following results may be easily derived.

Proposition 1.1. The following conclusions are true for the existence of the nonnegative equilibria of system 
(1.2).

(i) μ2 − 4aD2 < 0. System (1.2) has only two nonnegative equilibria E0(0, 0) and E1(K, 0).
(ii) μ2 − 4aD2 = 0. If 0 < K ≤ μ

2D , then system (1.2) has only two nonnegative equilibria E0(0, 0) and 
E1(K, 0); if μ

2D < K, then system (1.2) has three nonnegative equilibria: E0(0, 0), E1(K, 0) and one 
positive equilibrium point E2(x2, y2), where,
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2
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.

(iii) μ2 − 4aD2 > 0. If 0 < K ≤ μ−
√

μ2−4aD2

2D , then system (1.2) has only two boundary equilibria, E0(0, 0)
and E1(K, 0). If

μ−
√

μ2 − 4aD2

2D < K ≤ μ +
√
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2D ,

then, system (1.2) has three nonnegative equilibria: E0(0, 0), E1(K, 0) and one positive equilibrium 
point E3(x3, y3), where

x3 = μ−
√
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If K >
μ+

√
μ2−4aD2

2D , then system (1.2) has four nonnegative equilibria: E0(0, 0), E1(K, 0) and two 
positive equilibria E3(x3, y3), E4(x4, y4), where,

x4 = μ +
√
μ2 − 4aD2

2D , y4 = r
(
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