Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Pointwise versus equal (quasi-normal) convergence via ideals

Rafał Filipów*, Marcin Staniszewski

Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

ARTICLE INFO

Article history: Received 10 May 2014 Available online 10 September 2014 Submitted by M. Laczkovich

Keywords: Ideal Ideal convergence Equal convergence Quasi-normal convergence Pointwise convergence Bounding number

ABSTRACT

We prove a characterization showing when the ideal pointwise convergence does not imply the ideal equal (aka quasi-normal) convergence. The characterization is expressed in terms of a cardinal coefficient related to the bounding number \mathfrak{b} . We also prove a characterization showing when the ideal equal limit is unique.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

By an *ideal on a set X* we mean a nonempty family of subsets of X closed under taking finite unions and subsets of its elements. By Fin(X) we denote the ideal of all finite subsets of X (for $X = \mathbb{N}$ we write Fin = Fin(\mathbb{N})). Moreover, we also assume that ideals are proper (i.e. $X \notin \mathcal{I}$) and contain all finite subsets of X (i.e. $\operatorname{Fin}(X) \subseteq \mathcal{I}$).

Let \mathcal{I} be an ideal on N. We say that a sequence (x_n) of reals is \mathcal{I} -convergent to $x \in \mathbb{R}$ if the set $\{n \in \mathbb{N} : |x_n - x| \ge \varepsilon\} \in \mathcal{I}$ for every $\varepsilon > 0$. We write $(x_n) \xrightarrow{\mathcal{I}} x$ in this case. For $\mathcal{I} = F$ in we obtain the ordinary convergence.

Let \mathcal{I}, \mathcal{J} be ideals on \mathbb{N} . Let $f_n \ (n \in \mathbb{N})$ and f be real-valued functions defined on a set X. We say that the sequence (f_n) is $(\mathcal{I}, \mathcal{J})$ -equally convergent to f if there exists a sequence of positive reals $(\varepsilon_n) \xrightarrow{\mathcal{J}} 0$ such that $\{n : |f_n(x) - f(x)| \ge \varepsilon_n\} \in \mathcal{I}$ for every $x \in X$ [13]. We write $(f_n) \xrightarrow{(\mathcal{I}, \mathcal{J}) - e} f$ in this case. For $\mathcal{I} = \mathcal{J} = F$ in we obtain the equal convergence introduced by A. Császár and M. Laczkovich [9] and write $(f_n) \xrightarrow{e} f$ instead of $(f_n) \xrightarrow{(\text{Fin}, \text{Fin}) - e} f$. The equal convergence was independently introduced by

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2014.09.004

CrossMark

E-mail addresses: rfilipow@mat.ug.edu.pl (R. Filipów), Marcin.Staniszewski@mat.ug.edu.pl (M. Staniszewski). URL: http://mat.ug.edu.pl/~rfilipow (R. Filipów).

⁰⁰²²⁻²⁴⁷X/© 2014 Elsevier Inc. All rights reserved.

Z. Bukovská (see [2] and [1]), where she used the name "quasi-normal convergence" instead of "equal convergence". In [4,3] the authors use the equal convergence in the theory of trigonometrical series. In [11] and [14] the authors considered the ideal equal convergence in some special cases. Namely, in [11] the authors considered (\mathcal{I}, \mathcal{I})-equal convergence, whereas in [14] the authors considered (\mathcal{I}, \mathcal{F})-equal convergence.

Let \mathcal{I} be an ideal on \mathbb{N} . Let f_n $(n \in \mathbb{N})$ and f be real-valued functions defined on a set X. We say that the sequence (f_n) is \mathcal{I} -pointwise convergent to f if $\{n : |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}$ for every $x \in X$ and $\varepsilon > 0$. We write $(f_n) \xrightarrow{\mathcal{I}} f$ in this case. For $\mathcal{I} = \text{Fin}$ we obtain the pointwise convergence and write $(f_n) \to f$.

If $\mathcal{I} = \mathcal{J} = Fin$, then it is not difficult to show that the equal convergence implies the pointwise convergence. However the same is not true for arbitrary ideals \mathcal{I}, \mathcal{J} .

Theorem 1.1. (See [13, Proposition 4.4].) Let \mathcal{I} , \mathcal{J} be ideals on \mathbb{N} . The following are equivalent.

(1) For every sequence of real-valued functions defined on X, if $(f_n) \xrightarrow{(\mathcal{I}, \mathcal{J}) - e} f$ then $(f_n) \xrightarrow{\mathcal{I}} f$. (2) $\mathcal{J} \subseteq \mathcal{I}$.

If $\mathcal{I} = \mathcal{J} = \text{Fin}$, then it is also not difficult to show that the pointwise convergence does not imply the equal convergence. In [11, Example 3.1] the authors showed that if \mathcal{I} is a countably generated ideal, then the \mathcal{I} -pointwise convergence does not imply the $(\mathcal{I}, \mathcal{I})$ -equal convergence, and in [13, Example 4.7] we showed that if $|\mathcal{X}| \geq \mathfrak{c}$ and $\mathcal{J} \subseteq \mathcal{I}$ then the \mathcal{I} -pointwise convergence does not imply the $(\mathcal{I}, \mathcal{I})$ -equal convergence in the realm of continuous functions was already done in the literature, for instance in [7] and [8] the authors consider the case of the ordinary convergence (i.e. $\mathcal{I} = \text{Fin}$), whereas in [10] and [6] the authors generalized the previous results to the case of the ideal convergence.)

The aim of this paper is to prove the following theorem that gives a sufficient and necessary condition when the \mathcal{I} -pointwise convergence implies the $(\mathcal{I}, \mathcal{J})$ -equal convergence (see Section 5 for the proof).

Theorem 1.2. Let \mathcal{I}, \mathcal{J} be ideals on \mathbb{N} . For every set X the following are equivalent.

- (1) For every sequence (f_n) of real-valued functions defined on X, if $(f_n) \xrightarrow{\mathcal{I}} f$ then $(f_n) \xrightarrow{(\mathcal{I},\mathcal{J})-e} f$.
- (2) For every family $\{E_n^{\alpha} : n \in \mathbb{N}, \alpha < |X|\} \subseteq \mathcal{I}$ such that $E_n^{\alpha} \cap E_k^{\alpha} = \emptyset$ for $n \neq k$, $\alpha < |X|$ there exists a partition $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{J}$ of \mathbb{N} such that

$$\bigcup_{n\in\mathbb{N}} \left(A_n \cap \bigcup_{i\leq n} E_i^{\alpha} \right) \in \mathcal{I}$$

for every $\alpha < |X|$.

In Sections 2, 3 and 4 we introduced tools we need to prove the above-mentioned characterization. For instance we define a cardinal coefficient $\mathfrak{b}(\mathcal{I}, \mathcal{J})$ which is related to the bounding number \mathfrak{b} . In Section 6 we prove a characterization showing when the $(\mathcal{I}, \mathcal{J})$ -equal limit is unique.

2. Some properties of ideals

2.1. Orthogonal ideals

We say that ideals \mathcal{I}, \mathcal{J} on X are *orthogonal* if there is a set $A \subseteq X$ such that $A \in \mathcal{I}$ and $X \setminus A \in \mathcal{J}$.

Download English Version:

https://daneshyari.com/en/article/6418152

Download Persian Version:

https://daneshyari.com/article/6418152

Daneshyari.com