Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotic expansions of the moments of extremes from general error distribution

Pu Jia, Xin Liao*, Zuoxiang Peng

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

ARTICLE INFO

Article history: Received 2 April 2014 Available online 19 September 2014 Submitted by V. Pozdnyakov

Keywords: Expansion of moment Extreme value distribution Maximum General error distribution

ABSTRACT

In this paper, we derive the asymptotic expansions of the moments of normalized partial maxima for general error distribution. A byproduct is to deduce the convergence rates of the moments of normalized maxima to the moments of the corresponding extreme value distribution.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $\{X_n, n \ge 1\}$ be a sequence of independent and identically distributed (iid) random variables with marginal cumulative distribution function (cdf) $F_v \sim \text{GED}(v)$, the general error distribution with shape parameter v > 0. The probability density function (pdf) of GED(v) is defined by

$$f_v(x) = \frac{v \exp(-(1/2)|x/\lambda|^v)}{\lambda 2^{1+1/v} \Gamma(1/v)}, \quad x \in \mathbb{R},$$

where $\lambda = [2^{-2/v} \Gamma(1/v) / \Gamma(3/v)]^{1/2}$ and $\Gamma(\cdot)$ denotes the gamma function [10]. For v = 2, GED(2) reduces to the standard normal distribution.

Recently, asymptotic behaviors related to GED(v) have been studied in the literature. Peng et al. [11] established the Mills ratio and distributional tail representation of GED(v), and showed that $F_v \in D(\Lambda)$, i.e., there exist norming constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| \mathbb{P}(M_n \le a_n x + b_n) - \Lambda(x) \right| = 0, \tag{1.1}$$

* Corresponding author. E-mail address: liaoxin2010@163.com (X. Liao).

http://dx.doi.org/10.1016/j.jmaa.2014.09.030 0022-247X/© 2014 Elsevier Inc. All rights reserved.

where $M_n = \max_{1 \le k \le n} X_k$ denotes the partial maximum of $\{X_n, n \ge 1\}$ and $\Lambda(x) = \exp(-e^{-x})$, the Gumble extreme value distribution. Uniform convergence rate of $\mathbb{P}(M_n \le a_n x + b_n) - \Lambda(x)$ has been established by Peng et al. [12] which extended the work of Hall [1] for the case of GED(2). For higher-order expansion of $\mathbb{P}(M_n \le a_n x + b_n)$, see Nair [9] for GED(2) and Jia and Li [3] for general GED(v) with shape parameter v > 0.

Moments convergence of extremes was studied by McCord [8], Pickands [13] and Ramachandran [14], see Section 2.1 in Resnick [15]. The relationship between weak convergence and moment convergence of order statistics was considered by Hill and Spruill [2]. The objective of this paper is to establish the higher-order expansions of the moments of M_n for GED(v). Nair [9] derived the higher-order expansions of moments of extremes for standard normal distribution GED(2). Recall that Peng et al. [12] showed that (1.1) holds with norming constants a_n and b_n satisfying the following equations:

$$1 - F_v(b_n) = n^{-1}$$
 and $a_n = 2v^{-1}\lambda^v b_n^{1-v}$. (1.2)

Noting that for v = 1 the norming constants $a_n = 2^{-1/2}$ and $b_n = 2^{-1/2} \log n/2$. By Proposition 2.1(iii) in Resnick [15], we have

$$\Delta_r(n) = \mathbf{E} \left(\frac{M_n - b_n}{a_n}\right)^r - \int_{x \in \mathbb{R}} x^r \, d\Lambda(x) \to 0 \tag{1.3}$$

as $n \to \infty$ for all nonnegative integers r. The following work is to establish the asymptotic expansions of $\mathbf{E}((M_n - b_n)/a_n)^r$, from which we can derive the convergence rates of $\Delta_r(n)$. For more related work on asymptotic expansions of distributions and moments of extremes for given distributions, see Peng et al. [12], Liao and Peng [4] and Liao et al. [5–7].

This paper is organized as follows. Section 2 provides the main results, and some necessary auxiliary lemmas and their proofs are given in Section 3. The proofs of the main results are given in Section 4.

2. Main results

In this section, we provide the main results. In the sequel, for nonnegative integers r let

$$m_r(n) = \mathbf{E}\left(\frac{M_n - b_n}{a_n}\right)^r = \int_{x \in \mathbb{R}} x^r dF_v^n(a_n x + b_n)$$

and

$$m_r = \mathbf{E}\xi^r = \int\limits_{x \in \mathbb{R}} x^r d\Lambda(x)$$

respectively denote the rth moments of $(M_n - b_n)/a_n$ and $\xi \sim \Lambda(x)$, and the norming constants a_n and b_n are given by (1.2). The main results are stated as follows.

Theorem 2.1. Let $\{X_n, n \ge 1\}$ be an iid sequence with marginal distribution $F_v \sim \text{GED}(v)$. Then,

(i) for $v \neq 1$, with norming constants a_n and b_n given by (1.2), we have

$$b_n^v \left[b_n^v (m_r(n) - m_r) + (1 - v^{-1}) \lambda^v r(m_{r+1} + 2m_r) \right]$$

Download English Version:

https://daneshyari.com/en/article/6418167

Download Persian Version:

https://daneshyari.com/article/6418167

Daneshyari.com