

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

General of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

THE PROPERTY OF THE PROPERT

www.elsevier.com/locate/jmaa

Relative weak injectivity of operator system pairs

Angshuman Bhattacharya

 $Department\ of\ Mathematics\ and\ Statistics,\ University\ of\ Regina,\ S4S\ 0A2,\ Canada$

ARTICLE INFO

Article history: Received 6 September 2013 Available online 15 May 2014 Submitted by D. Blecher

Keywords:
Operator system
Commuting tensor product
Relative weak injectivity

ABSTRACT

The concept of a relatively weakly injective pair of operator systems is introduced and studied in this paper, motivated by relative weak injectivity in the C*-algebra category. E. Kirchberg [11] proved that the C*-algebra $C^*(\mathbb{F}_{\infty})$ of the free group \mathbb{F}_{∞} on countably many generators characterises relative weak injectivity for pairs of C*-algebras by means of the maximal tensor product. One of the main results of this paper shows that $C^*(\mathbb{F}_{\infty})$ also characterises relative weak injectivity in the operator system category. A key tool is the theory of operator system tensor products [9,10]. © 2014 Elsevier Inc. All rights reserved.

1. Introduction

A pair $(\mathcal{A}, \mathcal{B})$ of unital C*-algebras is a relatively weakly injective pair for every unital C*-algebra \mathcal{C} , $\mathcal{A} \otimes_{\max} \mathcal{C}$ is a unital C*-subalgebra of $\mathcal{B} \otimes_{\max} \mathcal{C}$. (In particular, one has that \mathcal{A} is a unital C*-subalgebra of \mathcal{B} .) It is common to say that \mathcal{A} is relatively weakly injective in \mathcal{B} if the pair $(\mathcal{A}, \mathcal{B})$ is a relatively weakly injective pair. Relative weak injectivity for pairs of C*-algebras was introduced by E. Kirchberg [11] and was motivated by the work of E.C. Lance [13] on the weak expectation property for C*-algebras.

The purpose of this paper is to introduce and study a notion of relative weak injectivity for pairs (S, \mathcal{T}) of operator systems S and \mathcal{T} . To do so, one therefore needs to consider operator system tensor products. Although the theory of tensor products [9,10] in the category \mathcal{O}_1 , whose objects are operator systems and whose morphisms are unital completely positive (ucp) linear maps, shares many similarities with C*-algebraic tensor products, there are some significant differences, particularly when considering the operator system analogue of the maximal C*-algebraic tensor product, \otimes_{\max} . With the max tensor product, there are two distinct tensor products (denoted by \otimes_c and \otimes_{\max}) in the category \mathcal{O}_1 that collapse to the maximal C*-algebraic tensor product on the subcategory of unital C*-algebras and unital *-homomorphisms. In this paper an operator system analogue of relative weak injectivity will be developed using the commuting tensor product, \otimes_c . Specifically, a pair (S, \mathcal{T}) of operator systems is said to be a relatively weakly injective pair if, for every operator system \mathcal{R} , $S \otimes_c \mathcal{R}$ is a unital operator subsystem of $\mathcal{T} \otimes_c \mathcal{R}$.

E-mail address: bhattaca@uregina.ca.

The C*-algebra $C^*(\mathbb{F}_{\infty})$ of the free group \mathbb{F}_{∞} on countably infinitely many generators is universal in the sense that every unital separable C*-algebra is a quotient of $C^*(\mathbb{F}_{\infty})$. Therefore, it is striking that the C*-algebra $C^*(\mathbb{F}_{\infty})$ can be used to characterise both the weak expectation property and relative weak injectivity, as demonstrated by two important theorems of Kirchberg. More precisely, \mathcal{A} has WEP if and only if $\mathcal{A} \otimes_{\min} C^*(\mathbb{F}_{\infty}) = \mathcal{A} \otimes_{\max} C^*(\mathbb{F}_{\infty})$ [11, Proposition 1.1], and $(\mathcal{A}, \mathcal{B})$ is a relatively weakly injective pair if and only if $\mathcal{A} \otimes_{\max} C^*(\mathbb{F}_{\infty}) \subset \mathcal{B} \otimes_{\max} C^*(\mathbb{F}_{\infty})$ [11, Proposition 3.1].

An operator system analogue of the weak expectation property for C*-algebras – namely the double commutant expectation property – was introduced and studied in [8,10], and it was shown that $C^*(\mathbb{F}_{\infty})$ characterises this property. One of the main results of this paper shows that $C^*(\mathbb{F}_{\infty})$ also characterises relative weak injectivity of operator system pairs (Theorem 4.1). In addition to establishing some alternate characterisations of relative weak injectivity, the existence of relatively weakly injective pairs $(\mathcal{S}, \mathcal{T})$ in the operator system category will be achieved (in Theorem 4.2) in a manner similar to Kirchberg's result [11, Corollary 3.5] that every unital separable C*-algebra is a unital C*-subalgebra of a unital separable C*-algebra with the weak expectation property. The paper concludes with a selection of examples.

The theory of operator algebraic tensor products is treated in the books [1,17], while operator system tensors products are developed in the papers [9,10]. Standard references for operator systems and completely positive maps are [15,16].

2. The commuting operator system tensor product

If S and T are operator systems, then the notation $S \subset T$ means that S is a unital operator subsystem of T. That is, if 1_S and 1_T denote the distinguished Archimedean order units for S and T respectively, then $1_S = 1_T$. Unless the context is not clear, the order unit for an operator system will be denoted simply by 1.

The algebraic tensor product $S \otimes T$ of operator systems S and T is a *-vector space. An operator system tensor product structure on $S \otimes T$ is a family $\tau = \{C_n\}_{n \in \mathbb{N}}$ of cones $C_n \subset M_n(S \otimes T)$ such that:

- (1) $(S \otimes T, \tau, 1_S \otimes 1_T)$ is an operator system, denoted by $S \otimes_{\tau} T$, in which $1_S \otimes 1_T$ is an Archimedean order unit,
- (2) $M_n(\mathcal{S})_+ \otimes M_m(\mathcal{T})_+ \subset \mathcal{C}_{nm}$, for all $n, m \in \mathbb{N}$, and
- (3) if $\phi: \mathcal{S} \to M_n$ and $\psi: \mathcal{T} \to M_m$ are unital completely positive (ucp) maps, then $\phi \otimes \psi: \mathcal{S} \otimes_{\tau} \mathcal{T} \to M_{nm}$ is a ucp map.

Recall that a unital completely positive linear (ucp) map $\phi : \mathcal{S} \to \mathcal{T}$ of operator systems is a *complete* order isomorphism if it is a linear bijection and if both ϕ and ϕ^{-1} are completely positive. If the ucp map ϕ is merely injective, then ϕ is a *complete order injection* if ϕ is a complete order isomorphism of between \mathcal{S} and the operator subsystem $\phi(\mathcal{S})$ of \mathcal{T} .

If $S_1 \subset \mathcal{T}_1$ and $S_2 \subset \mathcal{T}_2$ are inclusions of operator systems, and if $\iota_j : S_j \to \mathcal{T}_j$ are the inclusion maps, then for any operator system structures τ and σ on $S_1 \otimes S_2$ and $\mathcal{T}_1 \otimes \mathcal{T}_2$, respectively, the notation (as used in [5] also)

$$\mathcal{S}_1 \otimes_{\tau} \mathcal{S}_2 \subset_{+} \mathcal{T}_1 \otimes_{\sigma} \mathcal{T}_2$$

expresses the fact that the linear vector-space embedding $\iota_1 \otimes \iota_2 : \mathcal{S}_1 \otimes \mathcal{S}_2 \to \mathcal{T}_1 \otimes \mathcal{T}_2$ is a ucp map $\mathcal{S}_1 \otimes_{\tau} \mathcal{S}_2 \to \mathcal{T}_1 \otimes_{\sigma} \mathcal{T}_2$. That is, $\mathcal{S}_1 \otimes_{\tau} \mathcal{S}_2 \subset_+ \mathcal{T}_1 \otimes_{\sigma} \mathcal{T}_2$ if and only if $M_n(\mathcal{S}_1 \otimes_{\tau} \mathcal{S}_2)_+ \subset M_n(\mathcal{T}_1 \otimes_{\sigma} \mathcal{T}_2)_+$ for every $n \in \mathbb{N}$. If, in addition, $\iota_1 \otimes \iota_2$ is a complete order isomorphism onto its range, then this is denoted by

$$\mathcal{S}_1 \otimes_{\tau} \mathcal{S}_2 \subset_{\operatorname{coi}} \mathcal{T}_1 \otimes_{\sigma} \mathcal{T}_2.$$

Thus, $\mathcal{S} \otimes_{\tau} \mathcal{T} = \mathcal{S} \otimes_{\sigma} \mathcal{T}$ means $\mathcal{S} \otimes_{\tau} \mathcal{T} \subset_{coi} \mathcal{S} \otimes_{\sigma} \mathcal{T}$ and $\mathcal{S} \otimes_{\sigma} \mathcal{T} \subset_{coi} \mathcal{S} \otimes_{\tau} \mathcal{T}$.

Download English Version:

https://daneshyari.com/en/article/6418258

Download Persian Version:

https://daneshyari.com/article/6418258

<u>Daneshyari.com</u>