
J. Math. Anal. Appl. 420 (2014) 348–363

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The globally hyperbolic metric splitting for non-smooth 

wave-type space-times

Günther Hörmann ∗, Clemens Sämann
Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 October 2013
Available online 4 June 2014
Submitted by R. Popovych

Keywords:
Generalized functions
Regularization
Lorentzian manifolds
Non-smooth space-times
Wave-type space-times

We investigate a generalization of the so-called metric splitting of globally hyperbolic 
space-times to non-smooth Lorentzian manifolds and show the existence of this 
metric splitting for a class of wave-type space-times. The approach used is based 
on smooth approximations of non-smooth space-times by families (or sequences) of 
globally hyperbolic space-times. In the same setting we indicate as an application 
the extension of a previous result on the Cauchy problem for the wave equation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We investigate causal properties, especially global hyperbolicity, of wave-type space-times. The relevance 
of global hyperbolicity in general relativity is due to its role as the strongest established causality condition, 
in particular in the context of Cauchy problems and singularity theorems. Several equivalent conditions 
of global hyperbolicity have been investigated and developed, one of the first was existence of a Cauchy 
hypersurface and the most recent breakthrough was the proof the so-called metric splitting (cf. [3]; see also 
the discussion and Theorem 2.4 in Section 2). To initiate research for an extension of global hyperbolicity to 
the situation of non-smooth space-times this article aims at providing a case study, thereby also describing 
the explicit form of the metric splitting in the smooth case. For an overview of wider applications in general 
relativity of non-smooth Lorentzian metrics with techniques similar to the methods used here we refer 
to [25].

By wave-type space-times we mean a generalization of plane waves, the so-called N -fronted waves with 
parallel rays (NPWs) or general plane fronted waves (PFWs). These space-times are given as a product 
M = N × R

2, with metric

l = π∗(h) + 2dudv − a(., u)du2, (1.1)
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where h denotes the metric of an arbitrary connected Riemannian manifold (N, h), π: M → N is the 
projection (π∗(h) denotes the pullback under the projection of h to M) and u, v are global null-coordinates 
on the two-dimensional Minkowski space R2

1. Moreover a: N ×R → R is the so-called profile function, which 
we allow to be non-smooth. Locally in coordinates x1, . . . , xn on N at (x, u, v) ∈ M the metric l can be 
written as

l(x,u,v) =
n∑

i,j=1
hijdx

idxj + 2dudv − a(x, u)du2,

where hij denote the metric coefficients of h with respect to x1, . . . , xn.
NPWs were introduced by Brinkmann in the context of conformal mappings of Einstein spaces [4]. 

Recently their geometric properties and causal structure were studied in [6,12,7,13] (under the notion of 
general plane fronted waves – PFW). Due to the geometric interpretation of N as the wave surface of these 
waves (cf. [23]), it seems more natural to call them N -fronted waves, rather than plane-fronted waves. Note 
that plane-fronted waves with parallel rays (pp-waves) (cf. [14, Ch. 17]) are a special case of NPWs. In this 
case N = R

2 with the Euclidean metric.
It turns out (in the classical setting where the metric is smooth) that the behavior of a at spatial infinity, 

i.e., for “large x” is decisive for many of the global properties of NPWs. In order to formulate precise 
statements denote by dh the Riemannian distance function on (N, h) and recall that a is said to behave 
subquadratically at spatial infinity, if there exist a point x̄ ∈ N , continuous non-negative functions R1, 
R2: R → (0, ∞) and a continuous function p: R → (0, 2) such that for all (x, u) ∈ N × R

a(x, u) ≤ R1(u)dh(x, x̄)p(u) + R2(u). (1.2)

Similarly we say that a behaves at most quadratically if p ≤ 2. In [12] it has been shown that the causality of 
NPWs depends crucially on the exponent p in (1.2), with p = 2 being the critical case, which includes classical 
plane waves that are known to be strongly causal but not globally hyperbolic (cf. [22]). In particular, NPWs 
are causal but not necessarily distinguishing, they are strongly causal if a behaves at most quadratically at 
spatial infinity and they are globally hyperbolic if a is subquadratic and N is complete. Similarly the global 
behavior of geodesics in NPWs is governed by the behavior of a at spatial infinity. From the explicit form 
of the geodesic equations it follows (see [6, Thm. 3.2]) that a NPW is geodesically complete if and only if 
N is complete and

DN
ξ̇
ξ̇ = 1

2∇xa(ξ, α) (1.3)

has complete trajectories for all α ∈ R, i.e., the solutions of (1.3) can be defined on all of R. Here DN
ξ̇

is the 
induced covariant derivative on N and ∇x denotes the metric gradient with respect to h. Applying classical 
results on complete vector fields (e.g. [1, Thm. 3.7.15]) completeness of M follows for autonomous a (i.e., 
independent of u) in case −a grows at most quadratically at spatial infinity.

When discussing the case of non-smooth profile function a we will also employ the nonlinear theory of 
generalized functions in the sense of Colombeau, standard references are [9,10,20,15]. Our framework is the 
so-called special Colombeau algebra G (denoted by Gs in [15]) and we briefly recall the basic constructions. 
Let M be a smooth manifold. Colombeau generalized functions on M are defined as equivalence classes u =
[(uε)ε] of nets of smooth functions uε ∈ C∞(M) (regularizations) subjected to asymptotic norm conditions 
with respect to ε ∈ (0, 1] for their derivatives on compact sets. More precisely, we have

• moderate nets EM(M): (uε)ε ∈ C∞(M)(0,1] such that for any compact subset K ⊆ M , l ∈ N0, and vector 
fields X1, . . . , Xl on M there exists p ∈ R such that

‖Xl · · ·X1uε‖L∞(K) = O
(
ε−p

)
(ε → 0);
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