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We establish several operator extensions of the Chebyshev inequality. The main 
version deals with the Hadamard product of Hilbert space operators. More precisely, 
we prove that if A is a C∗-algebra, T is a compact Hausdorff space equipped with a 
Radon measure μ, α : T → [0, +∞) is a measurable function and (At)t∈T , (Bt)t∈T

are suitable continuous fields of operators in A having the synchronous Hadamard 
property, then

∫
T

α(s)dμ(s)
∫
T

α(t)(At ◦Bt)dμ(t) ≥
(∫

T

α(t)Atdμ(t)
)
◦
(∫

T

α(s)Bsdμ(s)
)
.

We apply states on C∗-algebras to obtain some versions related to synchronous 
functions. We also present some Chebyshev type inequalities involving the singular 
values of positive n × n matrices. Several applications are given as well.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H together 
with the operator norm ‖ · ‖. Let I stand for the identity operator. In the case when dim H = n, we identify 
B(H ) with the matrix algebra Mn of all n × n matrices with entries in the complex field C. An operator 
A ∈ B(H ) is called positive (positive semidefinite for a matrix A) if 〈Ax, x〉 ≥ 0 for all x ∈ H and then 
we write A ≥ 0. By a strictly positive operator (positive definite for a matrix) A, denoted by A > 0, we 
mean a positive invertible operator. For self-adjoint operators A, B ∈ B(H ), we say B ≥ A (B > A, resp.) 
if B −A ≥ 0 (B −A > 0, resp.). For A ∈ Mn, the singular values of A, denoted by s1(A), s2(A), · · · , sn(A), 
are the eigenvalues of the positive matrix |A| = (A∗A) 1

2 enumerated as s1(A) ≥ · · · ≥ sn(A) with their 
multiplicities counted.
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The Gelfand map f(t) �→ f(A) is an isometric ∗-isomorphism between the C∗-algebra C(sp(A)) of 
continuous functions on the spectrum sp(A) of a self-adjoint operator A and the C∗-algebra generated by I
and A. If f, g ∈ C(sp(A)), then f(t) ≥ g(t) (t ∈ sp(A)) implies that f(A) ≥ g(A). Let f be a continuous real 
valued function on an interval J . The function f is called operator monotone (operator decreasing, resp.) 
if A ≤ B implies f(A) ≤ f(B) (f(B) ≤ f(A), resp.) for all A, B ∈ BJ

h(H ), where BJ
h(H ) is the set of all 

self-adjoint operators in B(H ), whose spectra are contained in J ; cf. [10].
Given an orthonormal basis {ej} of a Hilbert space H , the Hadamard product A ◦ B of two operators 

A, B ∈ B(H ) is defined by 〈A ◦ Bei, ej〉 = 〈Aei, ej〉〈Bei, ej〉. Clearly A ◦ B = B ◦ A. It is known that the 
Hadamard product can be presented by filtering the tensor product A ⊗B through a positive linear map. 
In fact,

A ◦B = U∗(A⊗B)U, (1.1)

where U : H → H ⊗ H is the isometry defined by Uej = ej ⊗ ej ; see [6]. It follows from (1.1) that if 
A ≥ 0 and B ≥ 0, then

A ◦B ≥ 0. (1.2)

For matrices, one easily observes [14] that the Hadamard product of A = (aij) and B = (bij) is A ◦ B =
(aijbij), a principal submatrix of the tensor product A ⊗ B = (aijB)1≤i,j≤n. From now on when we deal 
with the Hadamard product of operators, we explicitly assume that an orthonormal basis is fixed.

The axiomatic theory of operator means has been developed by Kubo and Ando [8]. An operator mean 
is a binary operation σ defined on the set of strictly positive operators, if the following conditions hold:

(i) A ≤ C, B ≤ D imply A σ B ≤ C σ D;
(ii) An ↓ A, Bn ↓ B imply An σ Bn ↓ A σ B, where An ↓ A means that A1 ≥ A2 ≥ · · · and An → A as 

n → ∞ in the strong operator topology;
(iii) T ∗(A σ B)T ≤ (T ∗AT ) σ (T ∗BT ) (T ∈ B(H ));
(iv) I σ I = I.

There exists an affine order isomorphism between the class of operator means and the class of positive 
operator monotone functions f defined on (0, ∞) with f(1) = 1 via f(t)I = I σ (tI) (t > 0). In addition, 
A σ B = A

1
2 f(A−1

2 BA
−1
2 )A 1

2 for all strictly positive operators A, B. The operator monotone function f is 
called the representing function of σ. Using a limit argument by Aε = A + εI, one can extend the definition 
of A σ B to positive operators. The operator means corresponding to the operator monotone functions 
f�μ(t) = tμ and f!(t) = 2t

1+t on [0, ∞) are the operator weighted geometric mean A �μB = A
1
2 (A−1

2 BA
−1
2 )μA 1

2

and the operator harmonic mean A ! B = 2(A−1 + B−1)−1, respectively.
Let us consider the real sequences a = (a1, · · · , an), b = (b1, · · · , bn) and a non-negative sequence w =

(w1, · · · , wn). Then the weighed Chebyshev function is defined by

T (w; a, b) :=
n∑

j=1
wj

n∑
j=1

wjajbj −
n∑

j=1
wjaj

n∑
j=1

wjbj .

In 1882, Chebyshev [3] proved that if a and b are monotone in the same sense, then T (w; a, b) ≥ 0. Some inte-
gral generalizations of this inequality were given by Barza, Persson and Soria [1]. The Chebyshev inequality 
is a complement of the Grüss inequality; see [11] and the references therein.

A related notion is synchronicity. Two continuous functions f, g : J → R are called synchronous on an 
interval J , if
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