Contents lists available at ScienceDirect



Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

## Simultaneously continuous retraction and Bishop–Phelps–Bollobás type theorem



霐



### Sun Kwang Kim<sup>a</sup>, Han Ju Lee<sup>b,\*,1</sup>

<sup>a</sup> Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of Korea
<sup>b</sup> Department of Mathematics Education, Dongguk University – Seoul, 100-715 Seoul, Republic of Korea

#### ARTICLE INFO

Article history: Received 29 January 2014 Available online 11 June 2014 Submitted by B. Cascales

Keywords: Banach space Approximation Retraction Norm-attaining operators Bishop-Phelps-Bollobás theorem

#### ABSTRACT

The dual space  $X^*$  of a Banach space X is said to admit a uniformly simultaneously continuous retraction if there is a retraction r from  $X^*$  onto its unit ball  $B_{X^*}$  which is uniformly continuous in norm topology and continuous in weak-\* topology. We prove that if a Banach space (resp. complex Banach space) X has a normalized unconditional Schauder basis with unconditional basis constant 1 and if  $X^*$  is uniformly monotone (resp. uniformly complex convex), then  $X^*$  admits a uniformly simultaneously continuous retraction. It is also shown that  $X^*$  admits such a retraction if  $X = [\bigoplus X_i]_{c_0}$  or  $X = [\bigoplus X_i]_{\ell_1}$ , where  $\{X_i\}$  is a family of separable Banach spaces whose duals are uniformly convex with moduli of convexity  $\delta_i(\varepsilon)$  with  $\inf_i \delta_i(\varepsilon) > 0$  for all  $0 < \varepsilon < 1$ . Let K be a locally compact Hausdorff space and let  $C_0(K)$  be the real Banach space consisting of all real-valued continuous functions vanishing at infinity. As an application of simultaneously continuous retractions, we show that a pair  $(X, C_0(K))$  has the Bishop–Phelps–Bollobás property for operators if  $X^*$  admits a uniformly simultaneously continuous retraction. As a corollary,  $(C_0(S), C_0(K))$  has the Bishop-Phelps-Bollobás property for operators for every locally compact metric space S.

© 2014 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let X be a real or complex Banach space and A be a subset of X. A continuous function  $r: X \to A$  is said to be a *retraction* if r is the identity on A. Retractions have various applications in nonlinear geometric functional analysis [11,10,12]. Benyamini introduced the notion of simultaneously continuous retraction from the dual space  $X^*$  onto  $B_{X^*}$ . More precisely, the dual space  $X^*$  of a Banach space X is said to *admit a* (*resp. uniformly*) simultaneously continuous retraction if there is a retraction r from  $X^*$  onto  $B_{X^*}$  which is both weak-\* continuous and norm continuous (resp. uniformly norm-continuous). Benyamini [11] showed,

\* Corresponding author.

E-mail addresses: sunkwang@kgu.ac.kr (S.K. Kim), hanjulee@dongguk.edu (H.J. Lee).

 $<sup>^{1}</sup>$  The author partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A1006869).

<sup>0022-247</sup>X/© 2014 Elsevier Inc. All rights reserved.

in particular, that  $E^*$  admits uniformly simultaneously continuous retraction if  $E^*$  is a separable uniformly convex space, or E is the space C(K) of all real-valued continuous functions on a compact metric space K.

As remarked in Proposition 4.22. [12], there is a connection between simultaneously continuous retractions and the denseness of norm attaining operators into C(K). In this paper, we deal with the existence of uniformly simultaneous continuous retraction in a certain Banach space and its applications to Bishop– Phelps–Bollobás type theorem.

#### 2. Uniformly simultaneously continuous retraction

Let  $\{e_j\}$  be a normalized unconditional Schauder basis for X with unconditional basis constant 1. Its biorthogonal functionals will be denoted by  $\{e_j^*\}$ . In fact, it is easy to see that X and X<sup>\*</sup> are Banach lattices and, for every  $x^* \in X^*$ , we have

$$x^* = \operatorname{weak} * \sum_{j=1}^{\infty} x^*(j) e_j^*$$

where  $x^*(j) = \langle x^*, e_j \rangle$ . Recall that a Banach lattice X is uniformly monotone if, for all  $\varepsilon > 0$ ,

$$M(\varepsilon) = \inf\{\||x| + |y|\| - 1 : \|x\| = 1, \|y\| \ge \varepsilon\} > 0.$$

It is easy to check that  $\varepsilon \mapsto M(\varepsilon)$  is a monotone increasing function and  $M(\varepsilon) \leq \varepsilon$  for all  $\varepsilon > 0$ . This M is called the *modulus of monotonicity* of X. It is easy to check that if X is uniformly monotone, then X is strictly monotone. That is, ||x| + |y|| > ||x|| for all  $x \in X$  and for all nonzero element y in X. The uniform monotonicity of a Banach lattice is equivalent to the uniform complex convexity of its complexification [30,31]. The complex convexity has been used to study density of norm-attaining operators between Banach spaces [1,18].

Benyamini showed [11] that if X has a shrinking Schauder basis  $\{e_j\}$  with  $\{e_j^*\}$  being strictly monotone, then X<sup>\*</sup> admits a simultaneously continuous retraction. It is also shown that for  $X = \ell_p$ ,  $1 \le p < \infty$  or  $X = c_0$ , X<sup>\*</sup> admits a uniformly simultaneously continuous retraction.

For  $t \ge 0$ , we define  $M^{-1}(t) = \sup\{\varepsilon \ge 0 : M(\varepsilon) \le t\}$  for a monotone increasing function M. The modulus of continuity for a function  $\varphi$  is defined by

$$\omega_{\varphi}(t) = \sup\{\left\|\varphi(x^*) - \varphi(y^*)\right\| : \left\|x^* - y^*\right\| \le t\}.$$

Let f be a nonnegative function on a deleted neighborhood of 0 with  $\lim_{t\to 0+} f(t) = 0$ . We say that  $X^*$  admits an f-uniformly simultaneously continuous retraction if there is a uniformly simultaneously continuous retraction  $\varphi$  with  $\omega_{\varphi}(t) \leq f(t)$ .

**Theorem 2.1.** Suppose that a Banach space X has a normalized unconditional Schauder basis  $\{e_j\}$  with unconditional basis constant 1. If  $X^*$  is uniformly monotone with modulus of monotonicity M, then  $X^*$  admits a uniformly simultaneously continuous retraction with modulus of continuity  $2M^{-1}$ .

**Proof.** Notice that  $X^*$  is uniformly monotone and it is order-continuous (cf. [30]) and  $\{e_j^*\}_{j=1}^{\infty}$  is a Schauder basis. Given  $x^* = \sum_{j=1}^{\infty} a_j e_j^*$  with  $x^* \notin B_{X^*}$ , there is a unique *n* so that

$$\left\|\sum_{j=1}^{n-1} a_j e_j^*\right\| < 1, \text{ and } \left\|\sum_{j=1}^n a_j e_j^*\right\| \ge 1.$$

By the strict monotonicity and convexity of norm, there is a unique  $0 < t \le 1$  so that

Download English Version:

# https://daneshyari.com/en/article/6418323

Download Persian Version:

https://daneshyari.com/article/6418323

Daneshyari.com