

Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions

David Arcoya ${ }^{\text {a, } 1}$, Colette De Coster ${ }^{\text {b }}$, Louis Jeanjean ${ }^{\text {c,* }}$, Kazunaga Tanaka ${ }^{\text {d }}$
${ }^{\text {a }}$ Departamento de Análisis Matemático, Universidad de Granada, C/Severo Ochoa, 18071 Granada, Spain
b Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France
c Laboratoire de Mathématiques (UMR 6623), Université de Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex, France
d Department of Mathematics, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shijuku-ku, Tokyo 169-8555, Japan

A R T I C L E I N F O

Article history:

Received 25 February 2014
Available online 11 June 2014
Submitted by M. del Pino

Keywords:

Quasilinear elliptic equations
Quadratic growth in the gradient
Uniqueness of solution

A B S T R A C T

In this note we present some uniqueness and comparison results for a class of problem of the form

$$
\begin{equation*}
-L u=H(x, u, \nabla u)+h(x), \quad u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{0.1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 2$ is a bounded domain, L is a general elliptic second order linear operator with bounded coefficients and H is allowed to have a critical growth in the gradient. In some cases our assumptions prove to be sharp.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For a bounded domain $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ and a function $h \in L^{p}(\Omega)$ for some $p>\frac{N}{2}$ we consider the problem

$$
\begin{equation*}
-L u=H(x, u, \nabla u)+h(x), \quad u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{1.1}
\end{equation*}
$$

where L is a general elliptic second order linear operator and $H: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function which satisfy the assumptions:

[^0](L) There exists a family of functions $\left(a^{i j}\right)_{1 \leq i, j \leq N}$ with $a^{i j} \in L^{\infty}(\Omega) \cap W_{l o c}^{1, \infty}(\Omega)$ such that
$$
L u=\sum_{i, j} \frac{\partial}{\partial x_{j}}\left(a^{i j}(x) \frac{\partial u}{\partial x_{i}}\right)
$$
and, there exists $\eta>0$ such that, for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^{N}$,
$$
\sum_{i, j} a^{i, j}(x) \xi_{i} \xi_{j} \geq \eta|\xi|^{2}
$$
(H1) There exists a continuous function $C_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and a function $b_{1} \in L^{p}(\Omega)$ such that, for a.e. $x \in \Omega$, all $u \in \mathbb{R}$ and all $\xi \in \mathbb{R}^{N}$,
$$
|H(x, u, \xi)| \leq C_{1}(|u|)\left(|\xi|^{2}+b_{1}(x)\right) .
$$
(H2) There exists a function $b_{2} \in L_{\text {loc }}^{N}(\Omega)$ and a continuous function $C_{2}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that, for a.e. $x \in \Omega$, all $u_{1}, u_{2} \in \mathbb{R}$ with $u_{1} \geq u_{2}$ and all $\xi_{1}, \xi_{2} \in \mathbb{R}^{N}$,
$$
H\left(x, u_{1}, \xi_{1}\right)-H\left(x, u_{2}, \xi_{2}\right) \leq C_{2}\left(\left|u_{1}\right|,\left|u_{2}\right|\right)\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|+b_{2}(x)\right)\left|\xi_{1}-\xi_{2}\right| .
$$

As we shall see in the proof of Corollary 2.1, a sufficient condition for (H2) is that for a.e. $x \in \Omega, H(x, \cdot, \cdot) \in$ $\mathcal{C}^{1}\left(\mathbb{R} \times \mathbb{R}^{N}\right)$ with

$$
\begin{equation*}
\frac{\partial H}{\partial u}(x, u, \xi) \leq 0, \quad \text { a.e. } x \in \Omega, \forall u \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}, \tag{1.2}
\end{equation*}
$$

and that there exists a function $b_{3} \in L_{\text {loc }}^{N}(\Omega)$ and a continuous nondecreasing function $C: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfying

$$
\begin{equation*}
\left|\frac{\partial H}{\partial \xi}(x, u, \xi)\right| \leq C(|u|)\left(|\xi|+b_{3}(x)\right), \quad \text { a.e. } x \in \Omega, \forall u \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N} \tag{1.3}
\end{equation*}
$$

Uniqueness of solution for problem (1.1) (with $L u=\Delta u$) has been first studied in the work [4] and after improved in [3] by requiring weaker regularity conditions on the data. The reader can also see additional uniqueness results in [5] for subcritical nonlinear term H (with respect to ξ), i.e., when its growth is less than a power $|\xi|^{q}$ with $q<2$, and in the work [2] for the case that H has a singularity at $u=0$.

Specifically, in [3] the uniqueness of solution for every h is proved when it is assumed condition (1.3) and the following strengthening of (1.2):

$$
\frac{\partial H}{\partial u}(x, u, \xi) \leq-d_{0}<0, \quad \text { a.e. } x \in \Omega, \forall u \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}
$$

However, in the case that it is only assumed the general hypothesis (1.2) (together with (1.3)), the authors require to the function h to be sufficiently small in an appropriate sense. Furthermore, adapting the arguments of [3], the case where (1.2)-(1.3) hold and h has sign can also be covered. Nevertheless, the treatment of the general case (1.2)-(1.3) with no assumptions on h seems out of reach with the approach of [3,4].

The special case of (1.1) given by

$$
\begin{equation*}
-\Delta u=d(x) u+\mu(x)|\nabla u|^{2}+h(x), \quad u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{1.4}
\end{equation*}
$$

is studied in [1] by an alternative approach. Indeed, if $d, h \in L^{p}(\Omega)$ for some $p>\frac{N}{2}, \mu \in L^{\infty}(\Omega)$, then it is proved that (1.4) has at most one solution as soon as $d \leq 0$. Actually this condition is also necessary since

https://daneshyari.com/en/article/6418325

Download Persian Version:

https://daneshyari.com/article/6418325

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: darcoya@ugr.es (D. Arcoya), Colette.DeCoster@univ-valenciennes.fr (C. De Coster), louis.jeanjean@univ-fcomte.fr (L. Jeanjean), kazunaga@waseda.jp (K. Tanaka).
 ${ }^{1}$ D.A. is supported by FEDER-MEC (Spain) MTM2012-31799 and Junta de Andalucía FQM-116.
 http://dx.doi.org/10.1016/j.jmaa.2014.06.007
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

