

Inequalities on generalized trigonometric and hyperbolic functions

School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

A R T I C L E I N F O

Article history:
Received 11 September 2013
Available online 16 May 2014
Submitted by B.C. Berndt

Keywords:

Inequalities
Generalized trigonometric functions
Generalized hyperbolic functions

A B S T R A C T
In this paper, we prove some inequalities involving the generalized trigonometric
and hyperbolic functions.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

One way to define the trigonometric functions is via integration as follows:

$$
\arcsin (x)=\int_{0}^{x} \frac{1}{\left(1-t^{2}\right)^{1 / 2}} d t, \quad 0 \leq x \leq 1,
$$

and

$$
\frac{\pi}{2}=\arcsin (1)=\int_{0}^{1} \frac{1}{\left(1-t^{2}\right)^{1 / 2}} d t, \quad 0 \leq x \leq 1
$$

We define \sin on $\left[0, \frac{\pi}{2}\right]$ as the inverse of arcsin. For $1<p<\infty$, we generalize the inverse sine function as follows:

$$
\arcsin _{p}(x) \equiv \int_{0}^{x} \frac{1}{\left(1-t^{p}\right)^{1 / p}} d t, \quad 0 \leq x \leq 1,
$$

and

$$
\frac{\pi_{p}}{2}=\arcsin _{p}(1) \equiv \int_{0}^{1} \frac{1}{\left(1-t^{p}\right)^{1 / p}} d t, \quad 0 \leq x \leq 1
$$

The inverse of $\arcsin _{p}$ on $\left[0, \frac{\pi}{2}\right]$ is called generalized sine function and denoted by $\sin _{p}$.
The generalized cosine function $\cos _{p}$ is defined as

$$
\cos _{p}(x) \equiv \frac{d}{d x} \sin _{p}(x) .
$$

It is clear from the definition that

$$
\cos _{p}(x)=\left(1-\sin _{p}(x)^{p}\right)^{1 / p}, \quad x \in\left[0, \pi_{p} / 2\right],
$$

and

$$
\arccos _{p}(x)=\arcsin _{p}\left(\left(1-x^{p}\right)^{1 / p}\right) .
$$

The generalized tangent function is defined as in the classical case:

$$
\tan _{p}(x) \equiv \frac{\sin _{p}(x)}{\cos _{p}(x)}, \quad x \in \mathbb{R} \backslash\left\{k \pi_{p}+\frac{\pi_{p}}{2}: k \in \mathbb{Z}\right\} .
$$

Similarly, the generalized inverse hyperbolic sine function $\operatorname{arcsinh}_{p}$ is defined as

$$
\operatorname{arcsinh}_{p}(x) \equiv \begin{cases}\int_{0}^{x} \frac{1}{\left(1+t^{p}\right)^{1 / p}} d t, & x \in[0, \infty) \\ -\operatorname{arcsinh}_{p}(-x), & x \in(-\infty, 0)\end{cases}
$$

The inverse of $\operatorname{arcsinh}_{p}$ is called the generalized hyperbolic sine function and denoted by $\sinh _{p}$. The generalized hyperbolic cosine function $\cosh _{p}(x)$ is defined as

$$
\cosh _{p}(x) \equiv \frac{d}{d x} \sinh _{p}(x) .
$$

It is clear from the definition that

$$
\cosh _{p}(x)=\left(1+\sinh _{p}(x)^{p}\right)^{1 / p}, \quad x \in \mathbb{R},
$$

and

$$
\operatorname{arccosh}_{p}(x)=\operatorname{arcsinh}_{p}\left(\left(x^{p}-1\right)^{1 / p}\right) .
$$

The generalized hyperbolic tangent function is defined as

$$
\tanh _{p}(x) \equiv \frac{\sinh _{p}(x)}{\cosh _{p}(x)}
$$

It is easy to see that

$$
\frac{d}{d x} \cos _{p}(x)=-\cos _{p}(x)^{2-p} \sin _{p}(x)^{p-1}, \quad x \in\left[0, \pi_{p} / 2\right]
$$

https://daneshyari.com/en/article/6418361

Download Persian Version:

https://daneshyari.com/article/6418361

Daneshyari.com

