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1. Introduction

One way to define the trigonometric functions is via integration as follows:
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arcsin(z) = / mdt, 0<z<1,
0
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T 1
R i = _ <zx<
3 arcsin(1) / e dt, 0<z<L
0
We define sin on [0, 5] as the inverse of arcsin. For 1 < p < oo, we generalize the inverse sine function as
follows:
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arcsing (z) = / mdt, 0<z<1,
0
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5 = arcsin, (1) = / a—mr tp)l/pdt, 0<z<L
0

s
)
The generalized cosine function cos,, is defined as

The inverse of arcsin, on [0, 3] is called generalized sine function and denoted by sin,,.

cosp(x) = — siny(z).

dzx
It is clear from the definition that
— : p 1/p
cosp(w) = (1 —sin,(z)?)"", € 0,my/2],
and
arccos, (z) = arcsin,, (1 — xp)l/p).
The generalized tangent function is defined as in the classical case:

siny ()

tan,(z) xeR\{kwp+%;keZ}.

cosp(z)’

Similarly, the generalized inverse hyperbolic sine function arcsinh,, is defined as

* 1

71dt, T E 07 0),

arcsinh, (z) = Jo (+tr)i/» [ )
—arcsinhy,(—z), z € (—00,0).

The inverse of arcsinh,, is called the generalized hyperbolic sine function and denoted by sinh,. The gener-
alized hyperbolic cosine function cosh,(x) is defined as

coshy(z) = — sinh, ().

dx
It is clear from the definition that

coshy(z) = (1 + sinhy,(2)?) Up, z €R,
and

arccosh,(z) = arcsinh,, ((z? — 1) 1/]D).

The generalized hyperbolic tangent function is defined as

sinh,,(z)
tanh,(r) = —2-~.
() coshy,(x)
It is easy to see that
cos,(w) = — cos,(z)? Psiny(z)P ',z €[0,mp/2],

dz
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