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We consider the regularization of the backward in time problem for a nonlinear
parabolic equation in the form ut+Au(t) = f(u(t), t), u(1) = ϕ, where A is a positive
self-adjoint unbounded operator and f is a local Lipschitz function. As known, it
is ill-posed and occurs in applied mathematics, e.g. in neurophysiological modeling
of large nerve cell systems with action potential f in mathematical biology. A new
version of quasi-reversibility method is described. We show that the regularized
problem (with a regularization parameter β > 0) is well-posed and that its solution
Uβ(t) converges on [0, 1] to the exact solution u(t) as β → 0+. These results extend
some earlier works on the nonlinear backward problem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a Hilbert space with the inner product 〈.,.〉 and the norm ‖.‖. In this paper, we consider the
backward nonlinear parabolic problem of finding a function u : [0, 1] → H such that

{
ut + Au = f

(
u(t), t

)
, 0 < t < 1,

u(1) = ϕ,
(1)

where the function f is defined later and the operator A is self-adjoint on a dense space D(A) of H

such that −A generates a compact contraction semi-group on H. The backward parabolic problems arise
in different forms in heat conduction [4,10], material science [16], hydrology [3] and also in many other
practical applications of mathematics and engineering sciences. If H = L2(0, l) for l > 0, A = −Δ and
f(u(t), t) = u‖u‖2

L2(0,l) then a concrete version of problem (1) is given as
⎧⎪⎨
⎪⎩

ut − Δu = u‖u‖2
L2(0,l), (x, t) ∈ (0, l) × (0, 1),

u(0, t) = u(l, t) = 0, t ∈ (0, 1),
u(x, 1) = ϕ(x), x ∈ (0, l).

(2)
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The first equality in problem (2) is a semilinear heat equation with cubic-type nonlinearity and has many
applications in computational neurosciences. It occurs in neurophysiological modeling of large nerve cell
systems in mathematical biology (see [17]).

Let u(t) be the (unknown) solution of (1), continuous on t � 0 to H with an (unknown) initial value
u(0). In practice, u(1) is known only approximately by ϕ ∈ H with ‖u(1)−ϕ‖ � β, where the constant β is
a known small positive number. This problem is well known to be severely ill-posed [15] and regularization
methods are required. The homogeneous linear case of problem (1)

{
ut + Au = 0, 0 < t < 1,
u(1) = ϕ,

(3)

has been considered in many papers, such as [2,1,6–9,11–13,18] and references therein. For nonlinear case,
there are not many results devoted to backward parabolic equations. In [20,21], under assumptions that
f : H ×R → H is a global Lipschitz function with respect to the first variable u, i.e. there exists a positive
number k > 0 independent of w, v ∈ H, t ∈ R such that

∥∥f(w, t) − f(v, t)
∥∥ � k‖w − v‖, (4)

we regularized problem (1) and gave some error estimates. To improve the convergence of our method,
P.T. Nam [14] gave another method to get the Hölder estimate for regularized solution. More recently,
Hetrick and Hughes [5] established some continuous dependence results for nonlinear problem. Their results
are also solved under the assumption (4). Until now, to our knowledge, we did not find any papers dealing
with the backward parabolic equations included the local Lipschitz source f .

In this paper, we propose a new modified quasi-reversibility method to regularize (1) in case of the local
Lipschitz function f . The techniques and methods in previous papers on global Lipschitz function cannot
be applied directly to solve the problem (1). The main idea of the paper is of replacing the operator A

in (1) by an approximated operator Aβ , which will be defined later. Then, using some new techniques, we
establish the following approximation problem

{
v′β(t) + Aβvβ(t) = f

(
vβ(t), t

)
, 0 < t < 1,

vβ(1) = ϕ,
(5)

and give an error estimate between the regularized solution of (5) and the exact solution of (1).
Namely, assume that A admits an orthonormal eigenbasis {φk} on H corresponding to the eigenvalues

{λk} of A; i.e. Aφk = λkφk. Without loss of generality, we shall assume that

0 < λ1 < λ2 < λ3 < · · · , lim
k→∞

λk = ∞.

For every v in H having the expansion v =
∑∞

k=1〈v, φk〉φk, we define

Aβ(v) =
∞∑
k=1

ln+
(

1
βλk + e−λk

)
〈v, φk〉φk,

where ln+(x) = max{ln x, 0}. And for 0 � t � s � T , we define

Gβ(t, s)(v) =
∞∑
k=1

max
{(

βλk + e−λk
)t−s

, 1
}
〈v, φk〉φk.
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