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The paper concerns a new method to obtain a proof of the openness at linear rate/metric
regularity of composite set-valued maps on metric spaces by the unification and refinement
of several methods developed somehow separately in several works of the authors. In
fact, this work is a synthesis and a precise specialization to a general situation of some
techniques explored in the last years in the literature. In turn, these techniques are based
on several important concepts (like error bounds, lower semicontinuous envelope of a set-
valued map, local composition stability of multifunctions) and allow us to obtain two new
proofs of a recent result having deep roots in the topic of regularity of mappings. Moreover,
we make clear the idea that it is possible to use (co)derivative conditions as tools of proof
for openness results in very general situations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The property of metric regularity has its origins in the open mapping principle for linear operators obtained in the
1930s by Banach and Schauder, and is one of the three basic and crucial principles of functional analysis, having various
applications in many branches of mathematics. Later on, this principle was reinterpreted and generalized in two classical
results: the tangent space theorem of Lyusternik [44] and the surjection theorem of Graves [28]. The next decisive step in
this history was the extension of the Banach–Schauder principle to the case of set-valued maps with closed and convex
graph given independently by Ursescu in [63] and Robinson in [59] (the celebrated Robinson–Ursescu Theorem). Moreover,
it was observed in Dmitruk, Milyutin, and Osmolovsky [14] that the original proof of Lyusternik from [44] is applicable
to a much more general setting: the sum of a covering at a rate a > 0 single-valued mapping and a Lipschitz one with
a Lipschitz constant b < a is covering at the rate a − b. Another remarkable insight given in the mentioned paper is that
it clearly emphasizes the metric nature of openness and regularity properties. Afterwards, in 1996, Ursescu [64] was the
first to obtain a fully set-valued extension of the above results, in the setting of Banach spaces. On the tracks of [14], the
important work of Ioffe [30] made the crucial observation that the Lyusternik iteration process can be successfully used
when the original space is a complete metric space and the image space has a linear structure with shift-invariant metric,
in order to prove the preservation of regularity under single-valued Lipschitz perturbations. Detailed studies on the case of
the sum of a metrically regular set-valued mapping and a single-valued Lipschitz map appear, more recently, in works by
Dontchev, Lewis, and Rockafellar [19], Dontchev, and Lewis [18], Arutyunov [2,3], Mordukhovich [46]. For a detailed account
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for the whole topic of regularity properties of mappings, as well as various applications the reader is referred to the books
or works of many researchers: [5–13,15,19,20,27,29–31,33–40,44,46,48,49,52,53,55,56,60,62,65].

In the last years, the study of openness at linear rate (or equivalently metric regularity) of multifunctions obtained as
operations with set-valued maps has received a new impetus coming from at least three connected issues: the link between
Lyusternik–Graves type theorems and fixed point assertions [2,16,17], the growing interest to generalized forms of com-
positions [31,25] and the new developments of metric regularity results obtained under assumptions based on generalized
differentiation calculus and especially on coderivative conditions [50,22].

Included in this stream, the present paper concerns a new method to obtain a proof of the openness at linear rate/metric
regularity of composite set-valued maps on metric spaces by the unification and refinement of several methods developed
somehow separately in several works of the authors: [52,54,50,51,23,22,25,26]. In some sense, this is a synthesis and a
precise specialization to a general situation of some techniques explored in the quoted papers. In turn these techniques
are based on several important concepts (like error bounds, strong slope associated to a function, lower semicontinuous
envelope of a set-valued map, local composition stability of multifunctions) and allow us to obtain two new proofs of a
recent result having deep roots in the literature on the topic of regularity of mappings.

More precisely, the corner stones that this work rely on are mainly the results in [52] on the error bounds for a nonlinear
variational system, the main result in [26] concerning the openness of a composite multifunction, and also the coderivative
conditions for metric regularity as these appear in [50,22].

The main result of the paper (Theorem 3.8) is prepared by several propositions being of interest on their own. In that
main result one obtains, under some already standard (hence expected) assumptions (see [25,26]), the openness of an
auxiliary multifunction associated to a composition set-valued map, and on this basis, a result of openness around the
reference point for the considered composition. We want to emphasize here two main points both of them revealing the
novelty and the relevance of our work. Firstly, the conclusion is significantly richer than the corresponding conclusions
of the main results in [51] (from the point of view of the generality of set-valued operations), [25,26] (from the point
of view of the type of openness). Secondly, the proof is obtained using Ekeland Variational Principle (EVP, for short), a
fact that answers the following question: how to get proofs for openness results (and, also, for coincidence/fixed points
results), on complete metric spaces, using EVP and not arguing by contradiction. In our knowledge (see, for instance,
[64,16,25]), in many cases, the proofs relying on EVP are made on normed vector spaces, and reasoning by contradic-
tion. The supplemental structure of the space (i.e., its linear structure, but also the norm), which seems at first glance
a little surprising, it is used essentially in the construction of the contradiction. In this work, by the analysis of some
ideas spread in different articles (see [54,50,22]), we reached the conclusion that in order to obtain a proof in the
sense discussed before, one must apply EVP to the lower semicontinuous envelope of a certain distance function, by
the appropriate choice of an auxiliary multifunction involved in the construction of this envelope. As a consequence, by
combining and extending some techniques from the quoted articles, we are able to give here a complete and positive
(i.e., not arguing by contradiction) proof, based on EVP, for the metric regularity of set-valued mappings of composition
type. Moreover, in this way, we bring more light on the links between several tools used in getting regularity results for
multifunctions.

As a by-product of the main result, a coincidence/fixed points assertion is obtained, a fact that contributes to a discussion
on this subject initiated in [2–4] and continued in [16,17,25]. Furthermore, the important role of the assertions before the
main result is again emphasized, as the (immediate) proof of the fixed point assertion relies on the appropriate application
of one of them and of the main result (Theorem 3.8).

The last section deals with coderivative conditions for openness of composite mapping. Here we reconsider several ideas
in [51] and [24] and we employ a calculus rule for the Fréchet normal cone to the intersection of sets, passing through the
concept of alliedness introduced and studied by Penot and his coauthors [57,43]. Finally, as an interesting fact which makes
the link to the preceding section, we prove that one can obtain, on Asplund spaces, the conclusion of the main result of the
paper by the use of the coderivative condition previously developed.

2. Preliminaries

This section contains some basic definitions and results used in the sequel. In what follows, we suppose that the involved
spaces are metric spaces, unless otherwise stated. In this setting, B(x, r) and B(x, r) denote the open and the closed ball with
center x and radius r, respectively. On a product space we usually take the sum metric; when we choose another metric,
this will be stated explicitly. If x ∈ X and A ⊂ X , one defines the distance from x to A as d(x, A) := inf{d(x,a) | a ∈ A}. As
usual, we use the convention d(x,∅) = ∞. The excess from a set A to a set B is defined as e(A, B) := sup{d(a, B) | a ∈ A},
and the distance between A and B is given by d(A, B) := inf{d(a,b) | a ∈ A,b ∈ B}. For a non-empty set A ⊂ X we put cl A
for its topological closure. One says that a set A is locally complete (closed) if there exists r > 0 such that A ∩ B(x, r) is
complete (closed). The symbol V(x) stands for the system of neighborhoods of x.

Let X, Y , Z , P be metric spaces. For a multifunction F : X ⇒ Y , the graph of F is the set Gr F := {(x, y) ∈ X ×Y | y ∈ F (x)}.
If A ⊂ X , then F (A) := ⋃

x∈A F (x). The inverse set-valued map of F is F −1 : Y ⇒ X given by F −1(y) = {x ∈ X | y ∈ F (x)}. If
F1 : X ⇒ Y , F2 : X ⇒ Z , we define the set-valued map (F1, F2) : X ⇒ Y × Z by (F1, F2)(x) := F1(x) × F2(x). For a parametric
multifunction F : X × P ⇒ Y , we use the notations: F p(·) := F (·, p) and Fx(·) := F (x, ·).
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