

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Unital invertibility-preserving linear maps into matrix spaces

Constantin Costara

Faculty of Mathematics and Informatics, Ovidius University, Mamaia Boul. 124, 900527, Constanța, Romania

ARTICLE INFO

Article history: Received 21 May 2013 Available online 21 October 2013 Submitted by J.D.M. Wright

Keywords: Invertibility preserving Linear maps Spectrum function Continuity

ABSTRACT

We characterize unital invertibility-preserving linear maps from a complex, unital Banach algebra \mathcal{A} into \mathcal{M}_n , with no continuity assumption on them.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let \mathcal{A} be a unital Banach algebra over the complex field \mathbf{C} , and let $\mathbf{1} \in \mathcal{A}$ be its identity. For $x \in \mathcal{A}$, let $\sigma(x) \subseteq \mathbf{C}$ be its spectrum and $\rho(x)$ the spectral radius of x, that is the maximum modulus of $\sigma(x)$. The definition of the spectrum shows that if $\chi: \mathcal{A} \to \mathbf{C}$ is a character of \mathcal{A} (that is, a non-zero linear and multiplicative functional), then $\chi(x) \in \sigma(x)$ for each x in \mathcal{A} . In particular χ is also unital, that is $\chi(\mathbf{1}) = 1$. Now if χ is a unital, linear functional on \mathcal{A} , then $\chi(x)$ belongs to the spectrum of x for each x in \mathcal{A} if, and only if, χ sends invertible elements of \mathcal{A} into invertible (non-zero) elements of \mathcal{C} . Gleason [5] and Kahane and Żelazko [7] proved that in the class of unital, linear functionals, the invertibility-preserving property characterizes the multiplicative ones. This was further generalized by Kowalski and Slodkowski in [8], where they proved that if $f: \mathcal{A} \to \mathbf{C}$ with f(0) = 0 satisfies $f(x) - f(y) \in \sigma(x - y)$ for every $x, y \in \mathcal{A}$, then f is automatically linear, and therefore also multiplicative.

Another way to generalize the characterization of multiplicative functionals given by Gleason, Kahane and Żelazko is to replace **C** with the space of $n \times n$ complex matrices \mathcal{M}_n , for some $n \in \mathbb{N}$. Once more, if $\varphi : \mathcal{A} \to \mathcal{M}_n$ is linear such that $\varphi(\mathbf{1}) = I_n$, the $n \times n$ unit matrix, then φ preserves invertibility if, and only if,

$$\sigma(\varphi(x)) \subseteq \sigma(x) \quad (x \in \mathcal{A}). \tag{1}$$

In the case n=1 the continuity of such φ is automatic, since (1) implies $|\varphi(x)| \le \rho(x) \le ||x||$ for $x \in \mathcal{A}$. If n>1, to have continuity for such a map φ we need further assumptions on it. For example, if φ is surjective, then φ is continuous (see, e.g., [1, p. 13] or [2, Theorem 5.5.2]). In fact, the linear, unital, surjective and invertibility-preserving maps into \mathcal{M}_n are nothing but Jordan morphisms.

Theorem 1. (See [1, Theorem 1].) Let φ be a linear, unital and invertibility-preserving map from \mathcal{A} onto \mathcal{M}_n . Then φ is an algebra morphism or an algebra antimorphism.

The result of Aupetit was generalized by Christensen in [3], by removing the surjectivity assumption on φ and replacing it with continuity. See also [4, Section 4] for further development of the ideas and interesting examples of non-surjective unital linear invertibility-preserving mappings into \mathcal{M}_n .

Theorem 2. (See [3, Theorem 3.5].) Let φ be a continuous linear, and unital map from \mathcal{A} into \mathcal{M}_n . Then φ is invertibility-preserving if, and only if,

$$\operatorname{tr}(\varphi(x^k)) = \operatorname{tr}(\varphi(x)^k) \quad (k \in \mathbb{N}, \ x \in \mathcal{A}).$$
 (2)

(For $a \in \mathcal{M}_n$, by tr(a) we denote its usual trace.)

A unital, invertibility-preserving linear map from \mathcal{A} into \mathcal{M}_n is not automatically continuous. This comes from a result of Shirdareh Haghighi [6, Theorem 2.1], who obtained an explicit form for such discontinuous maps in the particular case n=2. Up to a similarity, a discontinuous unital linear mapping $\varphi:\mathcal{A}\to\mathcal{M}_2$ which preserves invertibility is of the form

$$\varphi = \begin{bmatrix} \alpha & \delta \\ 0 & \beta \end{bmatrix},\tag{3}$$

where α, β are non-zero multiplicative linear functionals on \mathcal{A} and δ is a discontinuous linear functional on \mathcal{A} , with $\delta(e) = 0$.

For example, take \mathcal{A} to be the algebra of complex-valued continuous functions on the real interval [0,1], with the uniform norm. Let α be the point evaluation at 0 and β the point evaluation at 1, and let δ be a linear functional on \mathcal{A} such that $\delta(t^n) = n$ for $n = 0, 1, \ldots$ Then α and β are multiplicative, and δ is discontinuous on \mathcal{A} and zero at the identity of \mathcal{A} . Then φ given by (3) is unital, linear and preserves invertibility, but not continuous.

Since no continuity assumption was needed in the Gleason–Kahane–Żelazko theorem, one may ask if [3, Theorem 3.5] remains true if φ is not supposed continuous. The case n=2 comes from [6, Theorem 2.1]. The answer in the general case is given by the next theorem, which is the main result of this paper.

Theorem 3. Let φ be a unital, linear mapping from \mathcal{A} into \mathcal{M}_n . Then φ preserves invertibility if, and only if, the relations (2) hold for each $k \in \mathbb{N}$ and $x \in \mathcal{A}$.

The map given by (3) shows that under the hypothesis of Theorem 3, the invertibility-preserving property of φ does not imply that it is necessarily continuous. The next corollary shows that we obtain continuity by taking the spectrum of φ .

Corollary 4. Let φ be a unital linear mapping from \mathcal{A} into \mathcal{M}_n . If φ preserves invertibility, then $\pi \circ \varphi : \mathcal{A} \to \mathbf{C}^n$ is continuous, where $\pi : \mathcal{M}_n \to \mathbf{C}^n$ is the symmetrization map, that is

$$\pi(x) = (S_1(x), \dots, S_n(x)) \quad (x \in \mathcal{M}_n),$$

where for k = 1, 2, ..., n, by $S_k(x)$ we have denoted the k-th symmetric function on the eigenvalues of $x \in \mathcal{M}_n$. (For example, S_1 is just the trace and S_n the determinant.)

Indeed, since (1) holds then $|\operatorname{tr}(\varphi(x))| \le n\rho(x) \le n\|x\|$ on \mathcal{A} , which means that the linear function $\operatorname{tr} \circ \varphi$ is continuous on \mathcal{A} . Using (2) we obtain continuity for $x \mapsto \operatorname{tr}(\varphi(x)^k)$, for each fixed k in \mathbb{N} . Now the classical Newton formulae imply continuity for each $S_k \circ \varphi$.

2. Proofs

If a map $\varphi: \mathcal{A} \to \mathcal{M}_n$ satisfies (1), then

$$\left|S_{k}(\varphi(x))\right| \leqslant \binom{n}{k} ||x||^{k} \quad (x \in \mathcal{A}, \ k = 1, \dots, n),\tag{4}$$

where for each k by $\binom{n}{k}$ we have denoted the standard binomial coefficient. In particular, we obtain continuity for each map $x \mapsto S_k(\varphi(x))$, but only at $0 \in \mathcal{A}$. If φ is also supposed linear then for the particular case k = 1 we obtain that $\operatorname{tr} \circ \varphi$ is continuous everywhere on \mathcal{A} .

In the linear case, the same inequalities involving the symmetric functions hold for invertibility-preserving maps.

Lemma 5. Suppose $\varphi: A \to \mathcal{M}_n$ is linear, unital, and preserves invertibility. Then φ satisfies (4).

Proof. As observed in the introduction, we have that φ satisfies (1), and therefore (4) holds. \Box

For the proof of Theorem 3 we shall need boundedness/continuity properties for more general maps than the ones given by (4). The main ingredient will be the following result, which generalize the one given by Lemma 5.

Download English Version:

https://daneshyari.com/en/article/6418540

Download Persian Version:

https://daneshyari.com/article/6418540

Daneshyari.com