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We characterize unital invertibility-preserving linear maps from a complex, unital Banach
algebra A into Mn , with no continuity assumption on them.
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1. Introduction and statement of results

Let A be a unital Banach algebra over the complex field C, and let 1 ∈ A be its identity. For x ∈ A, let σ(x) ⊆ C be its
spectrum and ρ(x) the spectral radius of x, that is the maximum modulus of σ(x). The definition of the spectrum shows
that if χ : A → C is a character of A (that is, a non-zero linear and multiplicative functional), then χ(x) ∈ σ(x) for each x
in A. In particular χ is also unital, that is χ(1) = 1. Now if χ is a unital, linear functional on A, then χ(x) belongs to the
spectrum of x for each x in A if, and only if, χ sends invertible elements of A into invertible (non-zero) elements of C.
Gleason [5] and Kahane and Żelazko [7] proved that in the class of unital, linear functionals, the invertibility-preserving
property characterizes the multiplicative ones. This was further generalized by Kowalski and Slodkowski in [8], where they
proved that if f : A → C with f (0) = 0 satisfies f (x) − f (y) ∈ σ(x − y) for every x, y ∈ A, then f is automatically linear,
and therefore also multiplicative.

Another way to generalize the characterization of multiplicative functionals given by Gleason, Kahane and Żelazko is to
replace C with the space of n × n complex matrices Mn , for some n ∈ N. Once more, if ϕ : A → Mn is linear such that
ϕ(1) = In , the n × n unit matrix, then ϕ preserves invertibility if, and only if,

σ
(
ϕ(x)

) ⊆ σ(x) (x ∈ A). (1)

In the case n = 1 the continuity of such ϕ is automatic, since (1) implies |ϕ(x)| � ρ(x) � ‖x‖ for x ∈ A. If n > 1, to have
continuity for such a map ϕ we need further assumptions on it. For example, if ϕ is surjective, then ϕ is continuous (see,
e.g., [1, p. 13] or [2, Theorem 5.5.2]). In fact, the linear, unital, surjective and invertibility-preserving maps into Mn are
nothing but Jordan morphisms.

Theorem 1. (See [1, Theorem 1].) Let ϕ be a linear, unital and invertibility-preserving map from A onto Mn. Then ϕ is an algebra
morphism or an algebra antimorphism.
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The result of Aupetit was generalized by Christensen in [3], by removing the surjectivity assumption on ϕ and replacing
it with continuity. See also [4, Section 4] for further development of the ideas and interesting examples of non-surjective
unital linear invertibility-preserving mappings into Mn .

Theorem 2. (See [3, Theorem 3.5].) Let ϕ be a continuous linear, and unital map from A into Mn. Then ϕ is invertibility-preserving if,
and only if,

tr
(
ϕ

(
xk)) = tr

(
ϕ(x)k) (k ∈ N, x ∈ A). (2)

(For a ∈Mn, by tr(a) we denote its usual trace.)

A unital, invertibility-preserving linear map from A into Mn is not automatically continuous. This comes from a result
of Shirdareh Haghighi [6, Theorem 2.1], who obtained an explicit form for such discontinuous maps in the particular case
n = 2. Up to a similarity, a discontinuous unital linear mapping ϕ :A→M2 which preserves invertibility is of the form

ϕ =
[
α δ

0 β

]
, (3)

where α,β are non-zero multiplicative linear functionals on A and δ is a discontinuous linear functional on A, with
δ(e) = 0.

For example, take A to be the algebra of complex-valued continuous functions on the real interval [0,1], with the
uniform norm. Let α be the point evaluation at 0 and β the point evaluation at 1, and let δ be a linear functional on A
such that δ(tn) = n for n = 0,1, . . . . Then α and β are multiplicative, and δ is discontinuous on A and zero at the identity
of A. Then ϕ given by (3) is unital, linear and preserves invertibility, but not continuous.

Since no continuity assumption was needed in the Gleason–Kahane–Żelazko theorem, one may ask if [3, Theorem 3.5]
remains true if ϕ is not supposed continuous. The case n = 2 comes from [6, Theorem 2.1]. The answer in the general case
is given by the next theorem, which is the main result of this paper.

Theorem 3. Let ϕ be a unital, linear mapping from A into Mn. Then ϕ preserves invertibility if, and only if, the relations (2) hold for
each k ∈ N and x ∈A.

The map given by (3) shows that under the hypothesis of Theorem 3, the invertibility-preserving property of ϕ does not
imply that it is necessarily continuous. The next corollary shows that we obtain continuity by taking the spectrum of ϕ .

Corollary 4. Let ϕ be a unital linear mapping from A into Mn. If ϕ preserves invertibility, then π ◦ ϕ : A→ Cn is continuous, where
π :Mn → Cn is the symmetrization map, that is

π(x) = (
S1(x), . . . , Sn(x)

)
(x ∈ Mn),

where for k = 1,2, . . . ,n, by Sk(x) we have denoted the k-th symmetric function on the eigenvalues of x ∈ Mn. (For example, S1 is
just the trace and Sn the determinant.)

Indeed, since (1) holds then | tr(ϕ(x))| � nρ(x) � n‖x‖ on A, which means that the linear function tr ◦ϕ is continuous
on A. Using (2) we obtain continuity for x �→ tr(ϕ(x)k), for each fixed k in N. Now the classical Newton formulae imply
continuity for each Sk ◦ ϕ .

2. Proofs

If a map ϕ :A→Mn satisfies (1), then

∣∣Sk
(
ϕ(x)

)∣∣ �
(

n

k

)
‖x‖k (x ∈ A, k = 1, . . . ,n), (4)

where for each k by
(n

k

)
we have denoted the standard binomial coefficient. In particular, we obtain continuity for each

map x �→ Sk(ϕ(x)), but only at 0 ∈ A. If ϕ is also supposed linear then for the particular case k = 1 we obtain that tr◦ϕ is
continuous everywhere on A.

In the linear case, the same inequalities involving the symmetric functions hold for invertibility-preserving maps.

Lemma 5. Suppose ϕ :A→Mn is linear, unital, and preserves invertibility. Then ϕ satisfies (4).

Proof. As observed in the introduction, we have that ϕ satisfies (1), and therefore (4) holds. �
For the proof of Theorem 3 we shall need boundedness/continuity properties for more general maps than the ones given

by (4). The main ingredient will be the following result, which generalize the one given by Lemma 5.
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