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1. Introduction
Let £2 be a bounded domain in RN, we consider the following boundary value problem

[—Au:f(x,u) in £2, (1.1)

u=~0 onds2,

where §2 and f are somehow symmetric in a sense to be defined later and u is a classical solution of (1.1). We would like
to study the symmetry properties of u.

A classical tool to study this question is the well-known moving plane method which was introduced by Alexandrov
and Serrin [12] and was successfully used by Berestycki, Gidas, Ni and Nirenberg in [4,7] to prove the radial symmetry of
positive solutions to (1.1) when £2 is a ball, f(x,s) = f(|x|,s) and f is nonincreasing in the radial variable. Moreover, there
are counterexamples to the symmetry of solutions if some of the hypotheses fail. For instance, see [5] for the existence of a
nonradial solution in an annulus. More recently, it is proved in [8] the bifurcation of nonradial positive solutions from the
radial positive solution of equation —Au = uP + Au in an annulus when the radii of the annulus vary or when the exponent
p varies. It is also proved in [1] that if £ is a square domain in R? and f(x,s) = w(x)s where w is a given positive
function invariant under all (Euclidean) symmetries of the square, then (1.1) has a solution which is neither symmetric
nor antisymmetric with respect to any nontrivial symmetry of the square. These examples point out that in general, the
symmetry of £2 and f does not imply the symmetry of solutions.

Nevertheless, we can expect that the solutions inherit part of the symmetry of the domain at least for some types of
nonlinearities or for certain types of solutions. This direction was first investigated in [10] where Pacella proved that if £2
is a ball or an annulus, f(x,s) = f(|x|,s) and f is strictly convex in s, then any solution u to (1.1) with Morse index one
is axially symmetric with respect to an axis passing through the origin and nonincreasing in the polar angle from this axis.
This conclusion was then expanded to solutions having Morse index j < N in [11] when £2 is a ball or an annulus and in [9]
when £ is the whole RV or the exterior of a ball. Afterwards, some similar results on partial symmetry for minimizers of
certain variational problems were obtained in [3,13] using symmetrization techniques.
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Instead of partial symmetry, the aim of this paper is to introduce sufficient conditions on u to ensure that u fully inherits
the symmetry of £2 and f. We are also interested in the general case that §2 is invariant under an orthogonal group action.
Our results can be applied to cases where the moving plane method does not work. The results also improve some results
in [10] when $2 is radially symmetric.

2. Preliminaries and results

In the sequel, let k be an integer such that 1 <k < N. Let £ be an open bounded domain in RN and f:£2 x R — R be
a continuous function of class C! with respect to the second variable s and u be a classical C%(£2) N C(£2) solution of (1.1).
We denote by L, = —A — %f(x, u) the linearized operator of (1.1) at u and Ax(Ly, D) the k-th eigenvalue of L, in D C £2
with zero Dirichlet boundary conditions.

Let 7 denote the set of all open half spaces H in RN such that the boundary dH has nonempty intersection with £2.
For H € H, we denote by ey the normal vector to dH that is oriented towards H and ry the reflection with respect to dH.
We also denote 2}y =2 NH and £2; =2 N RN\ H).

We denote the open ball in RN of center x and radius r > 0 by B(x,r) and define the distance between H1, H, € H by

d(Hi, Hy) =inf{r > 0: 2 C 2 +B(0,1), 2}, C 2} +B(0,n)}

then d is a metric on H.
For the sake of simplicity, in this paper, we don’t need the definitions of orthogonal groups O (k), group actions and
invariant sets but we will use the direct definitions of O (k)-invariant as follows:

Definition 2.1. A subset 2 ¢ RN is called O (k)-invariant if and only if x := (x1,X2,...,Xy) € £2 implies (X, X5, .,
Xjps X415 - -, XN) € £2 Whenever 22‘21 X} = 2‘:1 x[2.

Definition 2.2. A function u : 2 — R is called O (k)-invariant if and only if §2 is O (k)-invariant and u(x1,X2,...,XN) =
Uy, Xy, ..., X, X1, - .., XN) Whenever Zfﬂ 2= ?:1 X2,

Remark 2.3.

(i) A subset £2 ¢ RN or a function u is radially symmetric with respect to 0 if it is O (N)-invariant and axially symmetric
with respect to the axis {x € RN: xy =xp =--- =xy_1 =0} if it is O(N — 1)-invariant.
(ii) If £ or u is O (k)-invariant then it is O (k — 1)-invariant for 1 <k < N and N > 2.

We will use the following useful fact in later proofs:

Proposition 2.4. A subset 2 C RN is 0 (k)-invariant if and only if 2 is symmetric with respect to any hyperplane K satisfying
{0}k x RN—* = K. A similar conclusion is true for a function u : 2 — RN,

Denote 2~ ={xe€ £2: x; <0} and 21 = {x € 2: x; > 0}. We also denote by A;(L,, D) the first eigenvalue of the lin-
earized operator L, at a solution u of (1.1) in D C §2 with zero Dirichlet boundary conditions. We will use the following
result to get some partial symmetry of u. This result is Proposition 1.1 in [10] and can be proved easily using a reflection
argument:

Theorem 2.5. If 2 is symmetric with respect to the hyperplane {x € RN: x; = 0}, f(x, s) is even in x and strictly convex in s and
both A1(Ly, 27) and A1(Ly, 27) are nonnegative, then u is symmetric with respect to the x-variable, that is u(x1,...,xy) =
u(—x1,X2, ..., Xn). The same result holds if f is only convex but A1(Ly, £27) and A (Ly, 27) are both positive.

Our main results are the following theorems which will be proved in the next section. The first theorem deals with the
case 2 <k < N. The second one deals with the case 1 <k < N and positive solutions. Although the second theorem requires
additional assumptions on f and on geometric properties of 2, it may give us more qualitative information of u.

Theorem 2.6. Suppose that 2 < k < N, domain $2 is O (k)-invariant, f (x, s) is O (k)-invariant in x and convex in s and u is a classical
solution of (1.1). Then u is O (k)-invariant if Ay (Ly, £2) > 0.

Theorem 2.7. Suppose that 1 <k < N, domain $2 is O (k)-invariant, f(x, s) is O (k)-invariant in x and strictly convex in s and u is
a positive classical solution of (1.1). Furthermore, suppose that for every open half space H € H satisfying {0}¢ x RN—%  9H, there
exists a family of half spaces {H,, € H: o € [0, 11} such that

(i) Ho=Hand H =RN \ H,
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