

Contents lists available at ScienceDirect Journal of Mathematical Analysis and

Applications

www.elsevier.com/locate/jmaa

Weighted Bloch spaces and quadratic integrals

Evgueni Doubtsov¹

St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia

A R T I C L E I N F O

Available online 29 October 2013 Submitted by A. Daniilidis ABSTRACT

Let $\mathcal{B}^{\omega}(B_d)$ denote the ω -weighted Bloch space in the unit ball B_d of \mathbb{C}^d , $d \ge 1$. We show that the quadratic integral

$$\int_{x}^{1} \frac{\omega^2(t)}{t} dt, \quad 0 < x < 1,$$

governs the radial divergence and integral reverse estimates in $\mathcal{B}^{\omega}(B_d)$. © 2013 Elsevier Inc. All rights reserved.

1. Introduction

Weighted Bloch space Radial limit

Reverse estimate

Article history: Received 16 May 2013

Keywords:

Let $H(B_d)$ denote the space of holomorphic functions on the unit ball B_d of \mathbb{C}^d , $d \ge 1$.

1.1. Weighted Bloch spaces

Given a gauge function $\omega: (0, 1] \to (0, +\infty)$, the weighted Bloch space $\mathcal{B}^{\omega}(B_d)$ consists of those $f \in H(B_d)$ for which

$$\|f\|_{\mathcal{B}^{\omega}(B_d)} = \left|f(0)\right| + \sup_{z \in B_d} \frac{|\mathcal{R}f(z)|(1-|z|)}{\omega(1-|z|)} < \infty,\tag{1}$$

where

$$\mathcal{R}f(z) = \sum_{j=1}^{d} z_j \frac{\partial f}{\partial z_j}(z), \quad z \in B_d,$$

is the radial derivative of f. $\mathcal{B}^{\omega}(B_d)$ is a Banach space with respect to the norm defined by (1). If $\omega \equiv 1$, then $\mathcal{B}^{\omega}(B_d)$ is the classical Bloch space $\mathcal{B}(B_d)$. Usually we suppose that the gauge function ω is increasing; hence, we have $\mathcal{B}^{\omega}(B_d) \subset \mathcal{B}(B_d)$.

The above notation is not completely standard: often the weight $t/\omega(t)$ is attributed to $\mathcal{B}^{\omega}(B_d)$.

Assuming that ω is sufficiently regular, we show in the present paper that the quadratic integral

$$I(x) = I_{\omega}(x) = \int_{x}^{1} \frac{\omega^{2}(t)}{t} dt, \quad 0 < x < 1,$$

governs the radial divergence and integral reverse estimates in $\mathcal{B}^{\omega}(B_d)$. In both cases, the solutions are based on the classical Hadamard gap series.

E-mail address: dubtsov@pdmi.ras.ru.

¹ This research was supported by RFBR (grant No. 11-01-00526-a).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.10.065

1.2. Radial divergence

Given $f \in H(B_d)$ and $\zeta \in \partial B_d$, we say that f has a radial limit at ζ if there exists a *finite* limit $f^*(\zeta) = \lim_{r \to 1^-} f(r\zeta)$. Let σ_d denote the normalized Lebesgue measure on the unit sphere ∂B_d . The radial convergence or divergence in $\mathcal{B}^{\omega}(B_d)$ is described in terms of I(0+) by the following dichotomy:

Proposition 1.1. Let $\omega : (0, 1] \rightarrow (0, +\infty)$ be an increasing function.

- (i) Let $I(0+) < \infty$. If $f \in \mathcal{B}^{\omega}(B_d)$, then f has radial limits σ_d -almost everywhere.
- (ii) Let $I(0+) = \infty$ and let $\omega(t)/t^{1-\varepsilon}$ be decreasing for some $\varepsilon > 0$. Then the space $\mathcal{B}^{\omega}(B_d)$ contains a function with no radial limits σ_d -almost everywhere.

Remark that the condition $I(0+) = \infty$ was previously used by Dyakonov [8] to construct a non-BMO function lying in $\mathcal{B}^{\omega}(B_1)$ and in all Hardy spaces $H^p(B_1)$, 0 .

1.3. Reverse estimates

Given an unbounded decreasing function $v : (0, 1] \to (0, +\infty)$, typical reverse estimates are obtained in the growth space $\mathcal{A}^{v}(B_{d})$, which consists of $f \in H(B_{d})$ such that $|f(z)| \leq Cv(1 - |z|)$ for all $z \in B_{d}$. Namely, under appropriate restrictions on v, there exists a finite family $\{f_{j}\}_{j=1}^{J} \subset \mathcal{A}^{v}(B_{d})$ such that

$$\left|f_{1}(z)\right| + \dots + \left|f_{J}(z)\right| \ge C \nu \left(1 - |z|\right)$$

for all $z \in B_d$ (see, for example, [1] and references therein).

For the weighted Bloch space $\mathcal{B}^{\omega}(B_d)$, the following result provides integral reverse estimates related to the function $\Phi^{\frac{1}{2}}(1-|z|), z \in B_d$, where

$$\Phi(x) = \Phi_{\omega}(x) = 1 + \int_{x}^{1} \frac{\omega^{2}(t)}{t} dt, \quad 0 < x < 1.$$

Theorem 1.2. Let $d \in \mathbb{N}$ and let $0 . Assume that <math>\omega : (0, 1] \to (0, +\infty)$ increases and $\omega(t)/t^{1-\varepsilon}$ decreases for some $\varepsilon > 0$. Then there exists a constant $\tau_{d,p,\omega} > 0$ and functions $F_y \in \mathcal{B}^{\omega}(B_d), 0 \leq y \leq 1$, such that $\|F_y\|_{\mathcal{B}^{\omega}(B_d)} \leq 1$ and

$$\int_{0}^{1} \left| F_{y}(z) \right|^{2p} dy \ge \tau_{d,p,\omega} \Phi^{p} \left(1 - |z| \right)$$
(2)

for all $z \in B_d$.

For $\omega \equiv 1$ and for logarithmic functions ω , the above estimates were obtained in [6] and [14], respectively.

1.4. Organization of the paper

Section 2 is devoted to the radial divergence problem. In Section 3, we prove Theorem 1.2 and we show that estimate (2) is sharp, up to a multiplicative constant. Applications of Theorem 1.2 are presented in Section 4.

2. Radial divergence

Proposition 1.1(i) is a known fact. Indeed, if $I(0+) < \infty$ and $f \in \mathcal{B}^{\omega}(B_d)$, then $|\mathcal{R}f(z)|^2(1-|z|)$ is a Carleson measure, hence, $f \in BMOA(B_d)$. In particular, f has radial limits σ_d -a.e.

2.1. Proof of Proposition 1.1(ii) for d = 1

Put

$$f(z) = \sum_{k=0}^{\infty} \omega (2^{-k}) z^{2^k}, \quad z \in B_1.$$

Standard arguments guarantee that $f \in \mathcal{B}^{\omega}(B_1)$. For example, let $t \in (0, 1]$ and let $\tau = \frac{1}{t} \ge 1$. Observe that

Download English Version:

https://daneshyari.com/en/article/6418561

Download Persian Version:

https://daneshyari.com/article/6418561

Daneshyari.com