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The classical Hadamard three-circles theorem (1896) gives a relation between the maxi-
mum absolute values of an analytic function on three concentric circles. More precisely, it
asserts that if f is an analytic function in the annulus {z ∈ C: r1 < |z| < r2}, 0 < r1 < r <

r2 < ∞, and if M(r1), M(r2), and M(r) are the maxima of f on the three circles corre-
sponding, respectively, to r1, r2, and r then
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In this paper we introduce a Hadamard’s three-hyperballs type theorem in the framework
of Clifford analysis. As a concrete application, we obtain an overconvergence property of
special monogenic simple series.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Two main problems that arise in the study of function spaces can be broadly described as follows:

1. Does the space under consideration possess a basis?
2. If this is the case, how can any other basis of this space be characterized?

These topics are closely linked together, but can be largely treated independently of each other. Let us assume for a moment
that these problems are answered in a positive way. If E denotes a topological space and {xn}n∈N a basis in E , then each
element x ∈ E admits a (unique) decomposition of the form

∑∞
n=1 an(x)xn whereby for each n ∈ N, an is a linear functional

on E . For the purposes of approximation theory the choice of a suitable basis is very important. This work deals essentially
with these two fundamental problems in the case the underlying function spaces admit a set of polynomials as a basis.
Classical examples of such function spaces are the space of holomorphic functions in an open disk and the space of analytic
functions on a closed disk. Of course, as the theory of holomorphic functions in the plane allows higher dimensional
generalizations [6], analogous problems may be considered in the corresponding function spaces.

In the early thirties Whittaker [34–37] and Cannon [7–9] have introduced the theory of basic sets (bases) of polynomials
of one complex variable. This theory has been successfully extended to the Clifford analysis case in [2] (cf. [3]). Holomorphic
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functions (of one complex variable) are now replaced by Clifford algebra-valued functions that are defined in open subsets
of Rm+1 and that are solutions of a Dirac-type equation; for historical reasons they are called monogenic functions. In order
to obtain a good analogy with the theory of one complex variable, the results in [2,3] have been restricted to polynomials
with axial symmetry (also know as special polynomials), for which a Cannon theorem on the effectiveness could be proved
in closed hyperballs. It should be observed that it is expected that a similar theory on basic sets of polynomials might be
possible for polynomial null-solutions of generalized Cauchy–Riemann or Dirac operators, satisfying more general symmetry
conditions. This matter is already well-exposed in [2,3] and essential ideas therein.

The main purpose of the present work is to introduce a Hadamard’s three-hyperballs type theorem in the (m + 1)-di-
mensional Euclidean space within the Clifford analysis setting by making use of the above-mentioned theory of basis of
polynomials [2,3], and to establish an overconvergence property of special monogenic simple series. To the best of our
knowledge this is done here for the first time. Theorems of this type have become significantly more involved in higher di-
mensions, and in particular in the quaternionic and Clifford analysis settings. In a series of papers [13,15,22,23], the authors
have investigated higher dimensional counterparts of the well-known Bohr theorem and Hadamard real part theorems on
the majorant of a Taylor’s series, as well as Bloch’s theorem, in the context of quaternionic analysis. These results provide
powerful additional motivation to study the asymptotic growth behavior of monogenic functions from a given space, and to
explore classical problems of the theory of monogenic quasi-conformal mappings [14,21] (see also [20, Ch. 3]).

For the general terminology used in this paper the reader is referred to Wittaker’s book [37] in the complex case, and
the work done by Abul-Ez et al. [2,3] in the Clifford analysis setting.

2. Preliminaries

2.1. Basic notions of Clifford analysis

The present subsection collects some definitions and basic algebraic facts of a special Clifford algebra of signature (0,m),
which will be needed throughout the text.

Let {e1, e2, . . . , em} be an orthonormal basis of the Euclidean vector space R
m with a product according to the multipli-

cation rules:

eie j + e jei = −2δi, j (i, j = 1, . . . ,m),

where δi, j is the Kronecker symbol. This noncommutative product generates the 2m-dimensional Clifford algebra Cl0,m
over R, and the set {e A : A ⊆ {1, . . . ,m}} with

e A = eh1 eh2 · · · ehr , 1 � h1 � · · · � hm, eφ = e0 = 1,

forms a basis of Cl0,m . The real vector space R
m+1 will be embedded in Cl0,m by identifying the element (x0, x1, . . . , xm) ∈

R
m+1 with the algebra’s element

x := x0 + x ∈ Am := spanR{1, e1, . . . , em} ⊂ Cl0,m.

The elements of A are usually called paravectors, and x0 := Sc(x) and e1x1 + · · · + emxm := x are the so-called scalar and
vector parts of x. The conjugate of x is x̄ = x0 − x, and the norm |x| of x is defined by

|x|2 = xx̄ = x̄x = x2
0 + x2

1 + · · · + x2
m.

As Cl0,m is isomorphic to R
2m

we may provide it with the R
2m

-norm |a|, and one easily sees that for any a,b ∈ Cl0,m ,
|ab|� 2

m
2 |a||b|, where a = ∑

A⊆M aAe A and M stands for {1,2, . . . ,m}.
We consider Cl0,m-valued functions defined in some open subset Ω of R

m+1, i.e. functions of the form f (x) :=∑
A f A(x)e A , where f A(x) are scalar-valued functions defined in Ω . Properties (like integrability, continuity or differen-

tiability) that are ascribed to f have to be fulfilled by all components f A . In the sequel, we will make use of the generalized
Cauchy–Riemann operator

D := ∂

∂x0
+

m∑
i=1

ei
∂

∂xi
.

Suggested by the case m = 1, call a Cl0,m-valued function f left- (resp. right) monogenic in Ω if D f = 0 (resp. f D = 0) in Ω .
The interested reader is referred to [6] for more details.

Recent studies have shown that the construction of Am-valued monogenic functions as functions of a paravector variable
is very useful, particularly if we study series expansions of Cl0,m-valued functions in terms of special polynomial bases
defined in R

m+1. In this case we have

f : Ω ⊂ R
m+1 → Am, f (x0,x) = f0(x0,x) +

m∑
i=1

ei f i(x0,x),
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