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a b s t r a c t

In the present paper, we derive macroscopic mathematical models of the pressure distri-
bution field near the oil well during the hydraulic shock. To get these models we follow
the scheme, suggested by J. Keller and R. Burridge. This scheme is based upon a rigorous
homogenization of the exact mathematical model, describing on a microscopic level the
joint motion of an elastic solid skeleton and a viscous fluid filling the pores.

© 2013 Elsevier Inc. All rights reserved.

0. Introduction

Hydraulic shock is a sharp rise of the pressure in some fluid-filled system like pipes, cracks and pores. This process in an
oil well is a part of the hydraulic fracturing. There are some engineering models (formulas) to calculate the pressure in the
pipe system during the hydraulic shock. But these models do not work for more complex systems, such as oil well. Existing
mathematical models of the hydraulic shock in porous media [1,4,5] are nothing more than the same engineering models
as for the pipe systems.

In the present paper we derivemacroscopic mathematical models of the hydraulic shock, which are asymptotically close
to the basic models of continuum mechanics. To do this, we follow a very natural idea of R. Burridge and J. Keller [2]: first
of all, describe the physical process on the microscopic level by some physically correct mathematical model, and then, if
there is a small parameter, find all limiting regimes (homogenized equations) as the small parameter goes to zero.

As a basic mathematical model describing the hydraulic shock on the microscopic level we consider a model of short-
time isothermal processes in an incompressible medium [9,2,6–8], where the dimensionless displacement vector w of the
continuummedium in the dimensionless variables

x′
= Lx, t ′ = τ t, w ′

=
L2

gτ 2
w

satisfies the differential equation in the domain Ω for t > 0:

∇ · w = 0, (0.1)

ϱ̃
∂2w
∂t2

= ∇ · P + ϱ̃F , (0.2)

P = χ̃ ᾱµD

x,

∂w
∂t


+ (1 − χ̃)ᾱλD(x,w) − p I. (0.3)
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Here

ϱ̃ = χ̃ϱf + (1 − χ̃)ϱs,

χ̃(x) is a characteristic function of the pore space, p(x, t) is the pressure, ρf and ρs are the mean dimensionless densities of
the fluid and rigid solid components respectively, scaled with the mean density of the water ρ0, D(x, u) is a symmetric part
of ∇u:

D(x, u) =
1
2


∇u + (∇u)∗


,

and I is the unit tensor.
Dimensionless criteria ᾱµ and ᾱλ are defined by the formulas

ᾱµ =
2µτ

L2ρ0
, ᾱλ =

2λτ 2

L2ρ0
,

whereµ is the viscosity of fluid, λ is elastic Lamé’s constant, τ is a characteristic time of the process and L is the characteristic
size of the domain in consideration.

Eq. (0.2) is understood in a sense of distribution and contains Stokes equations in the liquid part, Lamé’s equations in the
solid skeleton and the continuity condition for the normal stresses on the common boundary ‘‘solid skeleton–pore space’’.

This mathematical model contains a natural small parameter ε, which is a characteristic size of pores l divided by the
characteristic size L: ε = l/L.

Our aim is to derive all possible limiting regimes (the homogenized equations) as ε ↘ 0. Such an approximation
significantly simplifies the original problem and at the same time preserves all of its main features. But even this approach
is too difficult to be realized, and some additional simplifying assumptions are necessary. In terms of geometrical properties
of the medium, it is most expedient to simplify the problem by postulating that the porous structure is periodic.

We impose the following constraints.

Assumption 1. (1) Let Ys be the ‘‘solid part’’ of the unit cube Y = (0, 1)3 ⊂ R3, and let the ‘‘liquid part’’ Yf of Y be its open
complement. We write γ = ∂Yf ∩ ∂Ys and assume that γ is a Lipschitz continuous surface.

(2) The domain Ef is a periodic repetition in R3 of the elementary cell Y ε
f = εYf and the domain Es is a periodic repetition

in R3 of the elementary cell Y ε
s = εYs.

(3) The pore space Ωε
f ⊂ Ω = Ω ∩ Ef is a periodic repetition in Ω of the elementary cell εYf , and the solid skeleton

Ωε
s ⊂ Ω = Ω ∩ Es is a periodic repetition in Ω of the elementary cell εYs. The Lipschitz continuous boundary

Γ ε
= ∂Ωε

s ∩ ∂Ωε
f is a periodic repetition in Ω of the boundary εγ .

(4) Ω = Ωε
f ∪ Γ ε

∪ Ωε
s . The pore space Ωε

f and the solid skeleton Ωε
s are connected domains.

Under these assumptions

χ̃(x) = χ ε(x) = χ0(x)χ
x

ε


,

where χ0(x) is a characteristic function of the domain Ω .
We suppose that the dimensionless parameters ᾱµ and ᾱλ depend on the small parameter ε and the (finite or infinite)

limits exist:

lim
ε↘0

ᾱµ(ε) = µ0, lim
ε↘0

ᾱµ

ε2
= µ1, lim

ε↘0
ᾱλ(ε) = λ0, lim

ε↘0

ᾱλ

ε2
= λ1.

We will find all homogenized equations and corresponding initial and boundary conditions for

µ0 = λ0 = 0

in each of the following cases:
(1) µ1 = λ1 = ∞;

(2) 0 6 λ1, µ1 < ∞;

(3) µ1 = ∞, 0 6 λ1 < ∞;

(4) λ1 = ∞, 0 6 µ1 < ∞.

For example, to the case µ1 = λ1 = ∞ corresponds the simple elliptic equation

∇ ·


1

ϱ(x)
∇ p


= 0

for the pressure, while the conditions 0 6 λ1, µ1 < ∞ lead to nonlocal homogenized equation

∇ ·

 t

0
B(µ1, λ1, t − τ) · ∇ p(x, τ )dτ


= 0.

The justification of our results is based on a systematic use of the two-scale convergence method, which was proposed by
G. Nguetseng [10] and has been recently used in a wide range of homogenization problems.
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