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a b s t r a c t

It has been shown in the past that for the most basic multi-strain ordinary differential
equation (ODE)model of SIR-type a competitive exclusion principle holds. The competitive
exclusion principle means that the strain with the largest reproduction number persists
but eliminates all other strains with suboptimal reproduction numbers. In this paper,
we extend the competitive exclusion principle to a multi-strain age-since-infection
structured model of SIR/SI-type. We also include environmental transmission for each of
the pathogens. Themodel describeswell transmission of avian influenza or cholera. Using a
Lyapunov functional,we are able to establish global stability of the disease-free equilibrium
if all reproduction numbers are smaller or equal to one. If Rj, the reproduction number
of strain j is larger than one, then a single-strain equilibrium, corresponding to strain j
exists. This single strain equilibrium is locally stable whenever Rj > 1 and Rj is the
unique maximal reproduction number. If R1 > 1 is the maximal reproduction number,
using a Lyapunov functional, we establish that the corresponding single-strain equilibrium
E1 is globally stable. That is, strain one eliminates all other strains, independently of their
reproduction numbers as long as they are smaller than R1.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The competitive exclusion principle is a fundamental result in ecology, postulated first by Gause [5]. It states that two
species competing for the same resource cannot coexist indefinitely if all other ecological conditions are the same. If one of
the species has even a small advantage over the other, that species will dominate and exclude the less advantageous one.
Competitive exclusion in ecology is predicted by a number of mathematical models of Lotka–Volterra or chemostat type
(see [7] and the references therein). Thesemodels have extended the principle to n species. The extended version states that
n complete competitors cannot coexist on a single resource. Only the species that can persist on the smallest amount of the
resource remain dominant, the others are eliminated.

The competitive exclusion principle has been recast through mathematical models in the context of epidemiology. The
first article that derives the epidemiological description of that principle does that through ordinary differential equations
(ODEs) [4]. In epidemiology, the competitive exclusion principle states that ifmultiple strains circulate in the population only
the strain with the largest reproduction number persists, the strains with suboptimal reproduction numbers are eliminated.
The goal of this article is to extend this principle to age-since-infection structured multi-strain models. The proof of a
competitive exclusion principle is based on a proof of global stability of the single-strain equilibrium. In the past, however,
most results on age-since-infection models were local and often demonstrated that the age-since-infection structure can
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destabilize the endemic equilibrium and oscillations are possible [22,13,14]. More recently it has been shown that simple
age-since-infection structured models with mass action incidence can have a locally stable endemic equilibrium. This has
paved the way to establishing global stability of the endemic equilibrium [11,12,21]. We draw on these results to derive the
competitive exclusion principle for infinite dimensional systems.

The persistence and the pandemic threat of avian influenza as well as the very publicized cholera outbreak in Haiti
have increased the awareness of diseases which transmit both directly and environmentally. Many recent articles have
been devoted to indirectly transmitted diseases [23,16,8,24,1]. Few of these articles, however, investigate the role of
the environment on the competition of pathogens. Questions of competition in the context of both direct and indirect
transmission have been discussed in [3,17]. Responding to these interests, we include both direct and indirect transmission
in our age-since-infection structured model. Indirect transmission has been modeled predominantly via bilinear incidence
or saturating in the free virus incidence. Our model uses bilinear incidence for the environmental transmission. It appears
that if the indirect transmission incidence is saturating, coexistence may occur and complete competitive exclusion cannot
be established [10].

Our model was inspired by the model introduced in [3]. Compared to the model in [3] our model includes age-since-
infection structure which turns our system into a PDE system. Furthermore, the authors of [3] consider saturating force of
infection for environmental transmission, while we consider linear force of infection. Our results are focused on establishing
rigorously the local and global stability of a single-strain equilibrium, while [3] derives invasion conditions and studies the
interplay between a directly transmitted and both directly and indirectly transmitted strain.

In the next section we introduce a multi-strain, age-since-infection structured, SIR/SI model with direct and
environmental transmission. By assuming that the shedding rate into the environment is zero, the model can be used for
a number of directly transmitted diseases (such as some childhood diseases). It is also suitable for modeling directly and
indirectly transmitted diseases such as cholera, influenza A, and hantavirus. In Section 2 we also introduce the reproduction
numbers of each strain Rj for j = 1, . . . , n as well as the disease reproduction number. Section 3 is devoted to the endemic
equilibria and their local stability. We find that there is a unique disease-free equilibrium and one single-strain equilibrium
corresponding to each strain. If Rj < 1 for j = 1, . . . , n, then the disease-free equilibrium is locally stable. If Rj > 1 for
some j and Rj is the unique maximal reproduction number, then the single-strain equilibrium corresponding to strain j is
locally asymptotically stable. In Section 4we construct a Lyapunov functional to show the global stability of the disease-free
equilibrium. Section 5 is devoted to the principle of competitive exclusion. We assume without loss of generality that strain
one has the maximal reproduction number and R1 > 1. Under that assumption, we show uniform strong persistence of
strain one when the remaining strains become extinct. In Section 6 we again use a Lyapunov functional to derive the global
stability of the strain one equilibrium, thus establishing complete competitive exclusion.

2. A multi-strain model with environmental transmission

In this section we introduce a model of disease that is both directly and environmentally transmitted. We assume that
the pathogen causing the disease is represented by multiple strains. A good example of such a disease is influenza A. To
introduce the model, we denote by S(t) the number of susceptible individuals. We structure the infected individuals by the
age-since-infection a. Let ij(a, t) be the density of individuals infected by strain j. Furthermore, let R(t) be the number of
recovered individuals. Finally, let Vj(t) be the number of virions of strain j in the environment. The model takes the form [3]
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0
βj(a)ij(a, t)da − S
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(2.1)

In model (2.1) Λ is the birth/recruitment rate, βj(a) is the time-since-infection structured transmission rate of strain
j, νj(a) is the duration of infectiousness/recovery rate, ρj is the transmission rate from the environmental contamination,
ηj(a) is the age specific shedding rate of individuals infected with strain j, δj is the clearance rate of the virus strain j from
the environment, and µ is the natural death rate.

To understand themodel, notice that susceptible individuals are recruited at a rateΛ. Susceptible individuals can become
infected with strain j either through a direct contact with an infected individual with strain j or through coming into
contact with viral particles of strain j that are in the environment. Infection through direct contact with infected individuals
can happen through contact with individuals of any age-since-infection at a specific age-specific transmission rate. As a
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