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a b s t r a c t

We study the Cauchy problem for damped wave equations with a fractional damping
(−∆)θut in Rn. We derive more sharp decay estimates of the total energy based on the
energy method in the Fourier space combined with the Haraux–Komornik inequality.
Especially, in the case when 0 ≤ θ ≤ 1/2 the rate of decay of the total energy
becomes almost optimal. The method in this paper can be applied to other equations and
in particular it seems to be quite effective in the case of frictional dissipation, i.e., when
θ = 0.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the initial value problem for the wave equation with fractional damping in Rn:

utt(t, x) + Au(t, x) + Aθut(t, x) = 0, (t, x) ∈ (0, ∞) × Rn (1.1)

with initial data

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Rn, (1.2)

where A := −∆ = −
n

i=1
∂2

∂x2i
.

The fractional power operator Aθ
: D(Aθ ) ⊂ L2(Rn) → L2(Rn) (θ ≥ 0) with its domain D(Aθ ) = H2θ (Rn) is defined by

Aθv(x) := F −1 
|ξ |

2θF (v)(ξ)

(x), v ∈ H2θ (Rn), x ∈ Rn,

whereF denotes the usual Fourier transform in L2(Rn) and | · | denotes the usual norm in Rn. The operator Aθ is nonnegative
and self-adjoint in L2(Rn) and the Schwartz space S(Rn) is dense in H2θ (Rn). Note that A1

= A and A0
= I .

For each (u0, u1) ∈ H1(Rn) × L2(Rn) the problem (1.1)–(1.2) admits a unique mild solution u ∈ C([0, ∞);H1(Rn)) ∩

C1([0, ∞); L2(Rn)) provided that θ ≥ 0 (see Carvalho–Cholewa [2] and Lu–Reissig [9]).
We are concerned with the total energy decay estimates of solutions to problem (1.1)–(1.2). The Eq. (1.1) interpolates

between the weak damping case (θ = 0) and the strong damping case (θ = 1). In the weak damping case we have historical

∗ Corresponding author.
E-mail addresses: charao@mtm.ufsc.br (R.C. Charão), cleverson@mtm.ufsc.br (C.R. da Luz), ikehatar@hiroshima-u.ac.jp (R. Ikehata).

0022-247X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.06.016

http://dx.doi.org/10.1016/j.jmaa.2013.06.016
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmaa.2013.06.016&domain=pdf
mailto:charao@mtm.ufsc.br
mailto:cleverson@mtm.ufsc.br
mailto:ikehatar@hiroshima-u.ac.jp
http://dx.doi.org/10.1016/j.jmaa.2013.06.016


248 R.C. Charão et al. / J. Math. Anal. Appl. 408 (2013) 247–255

results due to Matsumura [10], while in the strong damping case we can cite the Ponce result [11] (for more precise results
including exterior problems, see also Shibata [12] and Ikehata–Todorova–Yordanov [5]). Quite recently, Ikehata–Natsume [4]
proved (by modifying the previous paper due to [5]) the following estimates to the total energy:

Eu(t) ≤ C(∥∇u0∥
2
+ ∥u1∥

2)e−ηt
+ C∥u0∥

2
L1(1 + t)−

n+2
α + ∥u1∥

2
L1(1 + t)−

n
α , (1.3)

where α := max{2−2θ, 2θ}, and η > 0 is a small constant. Note that Karch [6] has already derived similar decay estimates
to (1.3) previously in the case when θ ∈ [0, 1/2]. On the other hand, in the weak damping case θ = 0 it follows from the
Matsumura [10] result that

Eu(t) ≤ C(∥∇u0∥
2
+ ∥u1∥

2)e−ηt
+ C(∥u0∥

2
L1 + ∥u1∥

2
L1)(1 + t)−

n+2
2 . (1.4)

If we take θ = 0 in (1.3), we have

Eu(t) ≤ C(∥∇u0∥
2
+ ∥u1∥

2)e−ηt
+ C∥u0∥

2
L1(1 + t)−

n+2
2 + ∥u1∥

2
L1(1 + t)−

n
2 . (1.5)

So, if we compare (1.4) with (1.5), we encounter a significant gap in the decay rates, i.e., the decay rate introduced in (1.3)
cannot be connected continuously at θ = 0. This shows that the rate of decay of (1.3) seems not to be optimal at least in
the case when θ ∈ [0, 1/2]. This is our motivation to re-study decay rates of the total energy. The approach which we use
in this paper seems to be much different from the previous works due to Ponce [11], Lu–Reissig [9], Shibata [12], Karch [6],
Ikehata–Natsume [4] and references therein. Our new method is relied on the energy method in the Fourier space (which
has its origin in Umeda–Kawashima–Shizuta [13]) combinedwith the Haraux–Komornik inequality, themonotonicity of the
localized and/or total energies in the Fourier space (see (3.8) and (3.9) below), and the property ofRn that power singularities
less than n are integrable around the origin. This combination seems new. The method in this paper can be applied to
the other equations and, in particular, it seems to be quite effective in the case of frictional dissipation, i.e., when θ = 0.
Applications to the other equations of our method will be announced in a forthcoming paper.

Notation. For 1 ≤ p ≤ ∞, Lp = Lp(Rn) denotes the usual Lebesgue space with the norm ∥ · ∥Lp . For simplicity of notations,
in particular, we use ∥·∥ instead of ∥·∥L2 . Let s be a nonnegative number, thenHs

= Hs(Rn) denotes the usual Sobolev space
of L2 functions, equipped with the norm ∥ · ∥Hs . Finally, in this paper, we write u(t) instead of u(t, x) in order to simplify the
notation.

2. Results

The total energy Eu(t) associated to the solution u(t) of Eq. (1.1) is defined by

Eu(t) =
1
2


∥ut(t)∥2

+ ∥∇u(t)∥2 .

It is very easy to see that Eu(t) satisfies the following identity

Eu(t) +

 t

0
∥Aθ/2ut(s)∥2 ds = Eu(0), (2.1)

for all t ≥ 0.
Thus, the total energy is a non-increasing function of t . Our main result in this paper is given by the following theorem

which shows explicit decay rates for the total energy depending on the power θ of the fractional damping and the
dimension n.

Theorem 2.1. Let n ≥ 1 and 0 ≤ θ ≤ 1. If [u0, u1] ∈ (H1(Rn) ∩ L1(Rn)) × (L2(Rn) ∩ L1(Rn)), then there exists a constant
C > 0 and a constant Cβ > 0 depending on β , such that the total energy associated to the solution u(t, x) of (1.1)–(1.2) satisfies

Eu(t) ≤ Cβ


∥u0∥

2
L1 + ∥u1∥

2
L1


t−1/β

+ C

∥∇u0∥

2
+ ∥u1∥

2 e−t/4, ∀t ≥ T0

where β is any positive fixed number satisfying

β >
α

n − 2θ + α

with α = max{2 − 2θ, 2θ}, and T0 is a constant depending on the initial data.

We note that α ≥ 1 for 0 ≤ θ ≤ 1, α = 2 − 2θ for θ ∈ [0, 1/2] and α = 2θ for θ ∈ [1/2, 1].

Remark 2.1. The constants Cβ and T0 appear in the proof of the theorem (see (4.3) and (4.6)).

Remark 2.2. In the case of θ ∈ [0, 1/2), the decay rate just obtained in Theorem 2.1 becomes

Eu(t) = O(t−
n+2−4θ
2(1−θ)

+δ
) (t → +∞),
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