Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions

Douglas R. Anderson
Department of Mathematics, Concordia College, Moorhead, MN 56562, USA

A R TICLE INFO

Article history:

Received 25 October 2012
Available online 17 June 2013
Submitted by Juan J. Nieto

Keywords:

Positive solutions
Cone
Fixed point theorem
Nonlinear boundary condition
Leggett-Williams theorem

A B S TRACT

Conditions for the existence of at least three positive solutions to the nonlinear first-order problem with a nonlinear nonlocal boundary condition given by

$$
\begin{array}{ll}
y^{\prime}(t)-r(t) y(t)=\sum_{i=1}^{m} f_{i}(t, y(t)), & t \in[0,1] \\
\lambda y(0)=y(1)+\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, y\left(\tau_{j}\right)\right), & \tau_{j} \in[0,1]
\end{array}
$$

are discussed, for sufficiently large $\lambda>1$ and $r \geq 0$. The Leggett-Williams fixed point theorem is utilized.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in the first-order boundary value problem with a nonlinear nonlocal boundary condition given by

$$
\begin{array}{ll}
y^{\prime}(t)-r(t) y(t)=\sum_{i=1}^{m} f_{i}(t, y(t)), & t \in[0,1] \\
\lambda y(0)=y(1)+\sum_{j=1}^{n} \Lambda_{j}\left(\tau_{j}, y\left(\tau_{j}\right)\right), & \tau_{j} \in[0,1] \tag{1.2}
\end{array}
$$

where $r:[0,1] \rightarrow[0, \infty)$ is continuous; the nonlocal points satisfy $0 \leq \tau_{1}<\tau_{2}<\cdots<\tau_{n} \leq 1$; the nonlinear functions $\Lambda_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ satisfy

$$
\begin{equation*}
0 \leq y \psi_{j}(t, y) \leq \Lambda_{j}(t, y) \leq y \Psi_{j}(t, y), \quad t \in[0,1], y \in[0, \infty) \tag{1.3}
\end{equation*}
$$

for some positive continuous (possibly nonlinear) functions $\psi_{j}, \Psi_{j}:[0,1] \times[0, \infty) \rightarrow[0, \infty$); the scalar λ satisfies

$$
\begin{equation*}
\lambda>\left(1+\sum_{j=1}^{n} \beta_{j}\right) \exp \left(\int_{0}^{1} r(\eta) d \eta\right)>1, \quad \beta_{j}:=\max _{[0,1] \times[0, C]} \Psi_{j}(t, y) \tag{1.4}
\end{equation*}
$$

for some real constant $C>0$; and the nonlinear functions $f_{i}:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ are all continuous. We also set

$$
\begin{equation*}
\alpha_{j}:=\min _{[0,1] \times[B, \lambda B]} \psi_{j}(t, y) \tag{1.5}
\end{equation*}
$$

for some constant real $B>0$ for later reference. Note that by continuity and compactness α_{j} and β_{j} exist and satisfy $\beta_{j}>$ $\alpha_{j}>0$.

[^0]Some of the motivation for this paper and the study of problem (1.1), (1.2) is as follows. First-order equations with various boundary conditions, including multi-point and nonlocal conditions, are of recent interest. For example, we cite the following papers. Zhao and Sun [14] were concerned with the first-order PBVP (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)+r(t) y(t)=\lambda f(t, y(t)), \quad t \in[0,1] \tag{1.6}\\
& y(0)=y(1) . \tag{1.7}
\end{align*}
$$

Tian and $\mathrm{Ge}[12]$ investigated the first-order three-point problem (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)+r(t) y(t)=\lambda f(t, y(t)), \quad t \in[0,1] \tag{1.8}\\
& y(0)-\alpha y(\eta)=\gamma y(1) \tag{1.9}
\end{align*}
$$

while Gao and Luo [2] were interested in the problem (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)+r(t) y(t)=\lambda f(t, y(t)), \quad t \in[0,1] \tag{1.10}\\
& y(0)=\sum_{j=1}^{n} \gamma_{j} y\left(t_{j}\right) \tag{1.11}
\end{align*}
$$

similarly Anderson [1] studied the first-order problem (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)+r(t) y(t)=\lambda f(t, y(t)), \quad t \in[0,1], \tag{1.12}\\
& y(0)=y(1)+\sum_{j=1}^{n} \gamma_{j} y\left(t_{j}\right) . \tag{1.13}
\end{align*}
$$

In a related paper, Nieto and R. Rodríguez-López [8] considered

$$
\begin{align*}
& y^{\prime}(t)+r(t) y(t)=\lambda f(t), \quad t \in[0,1], \tag{1.14}\\
& \lambda y\left(t_{0}\right)=\sum_{j=1}^{n} \gamma_{j} y\left(t_{j}\right) \tag{1.15}
\end{align*}
$$

Gilbert [3] looked at (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)=\lambda f(t, y(t)), \quad \text { a.e. } t \in[0,1], \tag{1.16}\\
& y(0)=y(1), \quad \text { or } \quad y(0)=y_{0} \tag{1.17}
\end{align*}
$$

using measure theory and Δ-Carathéodory functions. Goodrich [4] analyzed the p-Laplacian problem (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& \phi_{p}\left(y^{\prime}(t)\right)=h(t) f(y(t)), \quad t \in[0,1] \tag{1.18}\\
& y(0)=\Psi(y) \quad \text { or } \quad y(0)=B_{0}\left(y^{\prime}(1)\right) \quad \text { or } \quad y(0)=\left(y^{\prime}(1)\right)^{m} \tag{1.19}
\end{align*}
$$

while Graef and Kong [6] explored the related p-Laplacian problem (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& \phi_{p}\left(y^{\prime}(t)\right)=f(t, y(t)), \quad t \in[0,1], \tag{1.20}\\
& y(0)=B\left(y^{\prime}(1)\right) . \tag{1.21}
\end{align*}
$$

Otero-Espinar and Vivero [9] gave a general view of different kinds of weak first-order discontinuous boundary value problems on an arbitrary time scale with nonlinear functional boundary value conditions. Shu and Deng [11] proved the existence of three positive solutions to (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)=\lambda f(y(t)), \quad t \in[0,1] \tag{1.22}\\
& y(0)=\gamma y(1) \tag{1.23}
\end{align*}
$$

Zhao [13] applied a monotone iteration method to the problem (if $\mathbb{T}=\mathbb{R}$)

$$
\begin{align*}
& y^{\prime}(t)+r(t) y(t)=\lambda f(t, y(t)), \quad t \in[0,1] \tag{1.24}\\
& y(0)=g(y(1)) \tag{1.25}
\end{align*}
$$

where g denotes a nonlinear boundary condition. Precup and Trif [10] dealt with the existence, localization and multiplicity of positive solutions to nonlocal problems for first order differential systems of the form

$$
\begin{align*}
& y^{\prime}(t)=f(t, y(t)), \quad t \in[0,1] \tag{1.26}\\
& y(0)=\alpha[y] \tag{1.27}
\end{align*}
$$

https://daneshyari.com/en/article/6418679

Download Persian Version:

https://daneshyari.com/article/6418679

Daneshyari.com

[^0]: E-mail address: andersod@cord.edu.
 0022-247X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jmaa.2013.06.025

